The Esophageal Gland Mediates Host Immune Evasion by the Human

Total Page:16

File Type:pdf, Size:1020Kb

The Esophageal Gland Mediates Host Immune Evasion by the Human The esophageal gland mediates host immune evasion FROM THE COVER by the human parasite Schistosoma mansoni Jayhun Leea, Tracy Chonga,b, and Phillip A. Newmarka,b,c,1 aRegenerative Biology, Morgridge Institute for Research, Madison, WI 53715; bHoward Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53715; and cDepartment of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved June 30, 2020 (received for review April 7, 2020) Schistosomes are parasitic flatworms that cause schistosomiasis, a Within the snail host, cercariae develop organs necessary for neglected tropical disease affecting over 200 million people. infection (e.g., penetration glands) and primordia of organs (e.g., Schistosomes develop multiple body plans while navigating their the digestive tract) required during the next parasitic stage complex life cycle, which involves two different hosts: a mamma- (Fig. 1B). Cercariae also contain approximately five to six stem lian definitive host and a molluscan intermediate host. Their cells that are localized stereotypically: one pair of cells on each survival and propagation depend upon proliferation and differen- side, and one cell medially (7). Previously, we showed that upon tiation of stem cells necessary for parasite homeostasis and infection of the mammalian host and transformation into schis- reproduction. Infective larvae released from snails carry a handful tosomula, these cells begin to proliferate (7), but the fates of of stem cells that serve as the likely source of new tissues as the their progeny were unexplored. In this work, we examine the parasite adapts to life inside the mammalian host; however, the contributions of these stem cells to early intramammalian de- role of these stem cells during this critical life cycle stage remains velopment. Based on the unexpected finding that stem cells unclear. Here, we characterize stem cell fates during early intra- contribute to development of an accessory digestive organ, the mammalian development. Surprisingly, we find that the esopha- esophageal gland, before the rest of the digestive system is geal gland, an accessory organ of the digestive tract, develops formed, we characterize the gland’s function in vivo, revealing a before the rest of the digestive system is formed and blood mechanism for evasion of the host immune system. feeding is initiated, suggesting a role in processes beyond nutrient uptake. To explore such a role, we examine schistosomes that lack Results DEVELOPMENTAL BIOLOGY the esophageal gland due to knockdown of a forkhead-box tran- Stem Cells in Early Schistosomula Generate Parasite–Host Interfaces. Sm-foxA scription factor, , which blocks development and mainte- In flatworms, differentiated cells do not proliferate; thus, genes nance of the esophageal gland, without affecting the development regulated in a cell cycle-dependent manner, such as histone 2b of other somatic tissues. Intriguingly, schistosomes lacking the (h2b), can be used as generic stem cell markers (6, 15–17). Using esophageal gland die after transplantation into naive mice, but h2b as a marker of these cells in cercariae (Fig. 1C) and schis- survive in immunodeficient mice lacking B cells. We show that tosomula (Fig. 1D), we tracked their behavior by examining in- parasites lacking the esophageal gland are unable to lyse ingested corporation of 5-ethynyl-2′-deoxyuridine (EdU) in pulse-chase immune cells within the esophagus before passing them into the experiments either during in vitro transformation or in vivo (SI gut. These results unveil an immune-evasion mechanism mediated Appendix, Fig. S1A and Materials and Methods). The number of by the esophageal gland, which is essential for schistosome survival (h2b+) stem cells remained unchanged during 1 wk of in vitro and pathogenesis. culture, analogous to lung-stage in vivo schistosomula (Fig. 1D), stem cells | host–parasite interaction | foxA | intramammalian parasite development | parasitic helminths Significance chistosomes are parasitic flatworms that cause schistosomi- Schistosomes are parasitic flatworms infecting hundreds of Sasis, a neglected tropical disease affecting over 200 million millions of people. As they alternate between mammalian and individuals (1). Schistosomes reside in the vasculature of a wide molluscan hosts, their survival and propagation depend upon stem cell proliferation and differentiation. Tracking the fate of range of vertebrate hosts; there, they lay eggs that cause in- these stem cells during early intramammalian development, flammation and damage to host tissues, leading to schistosomi- we find that the esophageal gland, an accessory digestive or- asis (2). Their complex life cycle requires passage through gan, develops before the rest of the digestive system is formed molluscan and mammalian hosts (Fig. 1A): aquatic snails release and feeding begins, suggesting a role for this organ beyond cercariae, free-living, infective larvae that swim to find and nutrient uptake. We show that schistosomes lacking the penetrate mammalian host skin. Upon infection, the cercarial esophageal gland die in naive mice but survive in immunode- tail is lost at the infection site, and the parasite body transforms ficient mice lacking B cells; they are unable to lyse ingested into a schistosomulum. This early intramammalian-stage parasite immune cells before passing them into the gut. These results immediately faces major challenges as it adapts to this new host unveil an immune-evasion mechanism, which is essential for environment: it must migrate from the skin into the bloodstream, schistosome survival and pathogenesis. then through the lungs, to reach its niche in the hepatic vascu- Author contributions: J.L. and P.A.N. designed research; J.L. and T.C. performed research; lature (3). There, it will begin feeding on blood, which fuels J.L. analyzed data; and J.L. and P.A.N. wrote the paper. growth, sexual maturation, and reproduction. Failure at any step The authors declare no competing interest. would disrupt the life cycle, yet it manages these challenges, even This article is a PNAS Direct Submission. in the face of the host’s immune system (4, 5). Recent work has This open access article is distributed under Creative Commons Attribution-NonCommercial- identified heterogeneous populations of schistosome stem cells NoDerivatives License 4.0 (CC BY-NC-ND). – (6 10) and described their roles in asexual reproduction (7, 11), 1To whom correspondence may be addressed. Email: [email protected]. ’ tegument (the parasite s outer surface) production during ho- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ meostasis (12, 13), and germ cell development (7, 8, 10, 14). Thus, doi:10.1073/pnas.2006553117/-/DCSupplemental. stem cells help drive schistosome viability and transmission. www.pnas.org/cgi/doi/10.1073/pnas.2006553117 PNAS Latest Articles | 1of11 Downloaded by guest on September 26, 2021 A B water sporocysts egg mouth opening (m) esophagus (e) eg primordial vs esophageal gland (eg) (meg4.1+) body ventral schistosomulum sucker (vs) miracidium primordial gut (g) (cathepsin B+) X tail Schistosoma mansoni life cycle m gut e eg cercaria g germinal schistosomulum juvenile adult male female vs intra-mammalian cells skin lung mesenteric veins 50 μm development 0-3 days ~1 week ~2-4 weeks > 5 weeks DAPI PNA phalloidin merge C h2b DAPI D E 20 n.s 10 cells 15 h2b+ 10 5 M 5 number of total EdU+ cells 0 number of 01234 vs 0 R L cercariae D3 D7 D7 days of continuous EdU labeling 10 μm - D1 - D6 - D11 (lung) N (worms) 11 11 10 11 F h2b EdU DAPI EdU pulse: D0-D3; chase 4 days G tsp2 EdU DAPI EdU pulse: D0-D3; chase 4 days *p=0.0002 50 of total EdU+ cells of total tsp2+ cells 100 *p=0.01 *p=0.02 of total EdU+ cells of total h2b+ cells 25 n.s 50 +EdU+ cells +EdU+ cells tsp2 h2b % % 0 0 D3 D7 D3 D7 10 μm days post-transformation D3 D7 D3 D7 10 μm days post-transformation N = 10 12 N = 10 12 H meg4.1 cathepsin B DAPI I EdU DAPI (lung stage, D8) 1 1 2 12meg4.1 cathepsin B lung stage 100 2 80 60 1 +EdU+ worms 2 40 20 meg4.1 % 0 012345 days (post-EdU Injection) 10 μm 10 μm 10 μm 7/13 12/12 N = 8 9 10 8 Fig. 1. Stem cells drive early development of the schistosome esophageal gland. (A) Life cycle of Schistosoma mansoni. eg, esophageal gland; vs, ventral sucker. Each worm schematic depicts the esophageal gland (magenta-filled bean shapes), gut branches that stretch posteriorly (magenta outlines), and the ventral sucker (dark gray disk). The intramammalian developmental curve was adapted from ref. 40. (B) Anatomical features of schistosomula. (Top) Sche- matic view of a schistosomulum with the primordial digestive tract outlined. Genes expressed in distinct parts of the digestive tract are indicated. (Bottom) Day 1 posttransformation schistosomulum stained with PNA lectin and phalloidin, maximum-intensity projection (MIP). PNA (cyan) labels cercarial penetration gland used for mammalian skin penetration; this gland is largely unused after mechanical removal of tails. Phalloidin staining (magenta) labels muscular features surrounding the primordial digestive tract. (C) h2b fluorescence in situ hybridization (FISH) in cercaria, MIP. R and L, right and left, each showing pairs of h2b+ stem cells; M, medially located stem cell. vs, ventral sucker, indicated by white circles throughout (C–I). (D) Quantification of h2b+ cells in cercariae and schistosomula at various time points in vitro and in vivo (lung) (SI Appendix, Fig. S1A). Gray lines: Mean ± SD. Statistical analysis: one-way ANOVA. (E) Quantification of EdU+ cells at indicated days posttransformation after continuous EdU labeling in vitro. Mean ± SD. (F, Left) h2b FISH and EdU − labeling at day 3 or 7 posttransformation in vitro, MIP. Arrowheads: double-positive cells; Arrows: h2b+ EdU cells. (Right) Percent of h2b+ EdU+ cells over total − EdU+ cells (black) or h2b+ cells (gray); mean ± SD.
Recommended publications
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Aandp2ch25lecture.Pdf
    Chapter 25 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before body can make use of them • Digestive system—acts as a disassembly line – To break down nutrients into forms that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes (Continued) – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—organ system that processes food, extracts nutrients, and eliminates residue • Five stages of digestion – Ingestion: selective intake of food – Digestion: mechanical and chemical breakdown of food into a form usable by
    [Show full text]
  • 組織學實驗:消化系統 I Histology Laboratory : Digestive System I
    組織學實驗:消化系統 I Histology laboratory : Digestive system I 實驗講義 : 陳世杰 老師 Shih-Chieh Chen, PhD. 張瀛双 Ying-Shuang Chang 李怡琛 Yi-Chen Lee 張昭元 Chao-Yuah Chang 劉俊馳 Chun-Chih Liu :07-3121101 ext 2144-18 :[email protected] Please study these slides before coming to the class! Sources of the Pictures & Text Wheater’s Functional Histology (4th ed) B. Young & J. W. Heath Histology: A Text and Atlas (4th ed) M.H. Ross & W. Pawlina Photomicrograph Taken by Department of anatomy, Kaohsiung Medical University Learning Objective Microscopic structure of digestive system 93W6748 Esophagus, Middle portion, human (cs) H&E 93W6746 Esophagus, Upper portion, human (cs) H&E 93W4875 Trachea and Esophagus (cs) H&E 93W4506 Esophagus and stomach (ls) H&E 93W4508 Stomach, composite (sec.) H&E 93W4522 Stomach and Duodenum (ls) H&E 93W4523 Digestive system, Composite (sec.) H&E Wheater’s Functional Histology Learning Objective • To understand the basic structural organization of the wall of alimentary tube. • Identify the esophagus, the stomach and the small intestine. • Identify the upper, middle, and lower portion of the esophagus. • Identify the duodenum, jejunum, and ileum of the small intestine. V M S ME A Fig 1. 93W6748 Esophagus, middle M: Mucosa S: Submucosa ME: Muscularis externa A: Adventitia portion, human, H&E V: Vessels Fig 1. 93W6748 Esophagus, middle portion, human, H&E. The portion of the alimentary canal that extends from the proximal part of the esophagus to the distal part of the anal canal is a hollow tube of varying diameter. This tube has the same basic structural organization throughout its length.
    [Show full text]
  • Studies on the Morphology and Life History of Nematodes in the Genus Spironoura
    THE UNIVERSITY OF ILLINOIS LIBRARY 370.5 JLL- Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/studiesonmorphol14mack ILLINOIS BIOLOGICAL MONOGRAPHS 3 Vol. XIV No - Published by the University of Illinois Under the Auspices of the Graduate School Urbana, Illinois EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny UNIVERSITY OP ILLINOIS 1000—7-36—5800 " PI,E£S " STUDIES ON THE MORPHOLOGY AND LIFE HISTORY OF NEMATODES IN THE GENUS SPIRONOURA WITH FIVE PLATES AND TWO TEXT-FIGURES By John Gilman Mackin Contribution from the Zoological Laboratory of the University of Illinois No. 484 Distributed August 25, 1936 CONTENTS I. Introduction 7 II. Anatomy of Spironoura chelydrae (Harwood) 1932. ... 7 General External Morphology 7 Lip Supports 10 Digestive System 12 Female Reproductive System 26 Male Reproductive System 31 Musculature 33 Excretory System 36 III. Descriptions of New Species 37 Generic Diagnosis 37 Spironoura wardi n. sp 39 Spironoura concinnae n. sp 41 Key to the North American Species of Spironoura. 43 IV. Observations on Growth and Variation 44 V. Summary 48 Plates 49 Bibliographical References 62 I. INTRODUCTION Few extensive studies have been made on the anatomy and growth variations of nematodes, and these have been confined so largely to isolated and economic forms that nothing like a comprehensive knowledge of the group as a whole is available. Thus it has been deemed worth while to extend our knowledge through study of a form not too nearly related to the Ascarids, Oxyurids, and Ancylostomas, already well known.
    [Show full text]
  • The Esophageal Gland Mediates Host Immune Evasion by the Human Parasite Schistosoma Mansoni
    The esophageal gland mediates host immune evasion by the human parasite Schistosoma mansoni Jayhun Leea, Tracy Chonga,b, and Phillip A. Newmarka,b,c,1 aRegenerative Biology, Morgridge Institute for Research, Madison, WI 53715; bHoward Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53715; and cDepartment of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved June 30, 2020 (received for review April 7, 2020) Schistosomes are parasitic flatworms that cause schistosomiasis, a Within the snail host, cercariae develop organs necessary for neglected tropical disease affecting over 200 million people. infection (e.g., penetration glands) and primordia of organs (e.g., Schistosomes develop multiple body plans while navigating their the digestive tract) required during the next parasitic stage complex life cycle, which involves two different hosts: a mamma- (Fig. 1B). Cercariae also contain approximately five to six stem lian definitive host and a molluscan intermediate host. Their cells that are localized stereotypically: one pair of cells on each survival and propagation depend upon proliferation and differen- side, and one cell medially (7). Previously, we showed that upon tiation of stem cells necessary for parasite homeostasis and infection of the mammalian host and transformation into schis- reproduction. Infective larvae released from snails carry a handful tosomula, these cells begin to proliferate (7), but the fates of of stem cells that serve as the likely source of new tissues as the their progeny were unexplored. In this work, we examine the parasite adapts to life inside the mammalian host; however, the contributions of these stem cells to early intramammalian de- role of these stem cells during this critical life cycle stage remains velopment.
    [Show full text]
  • Bbm:978-3-642-77287-0/1.Pdf
    Appendix The figure (., data obtained from litters born in captivity; ., data from litters born in the wild. Each point on the curve is the mean for 3-9 animals.) shown below (from Cutts et at. 1978b) relates body length (snout-pump length) to age for the first 106 days of postnatal life. During the first 10 weeks, growth is linear and the increase in length is remarkably constant regardless of litter size or sex. 220 · ~ ·• 210 200 ¥ / ! 180- 110 / • J 150 I I • .1 _ 120 J J no 7 ~jlo ,/ ./ 90 V /' 7 ./ / 50 V 40 V V V I 7 10 2' 28 l5 02 49 56 63 70 77 84 91 98 '05 Age (days) 129 References Acuff ME, Krause WJ, Cutts JH (1989) The cardiac, oxyntic and pyloric glands in the developing opossum (Didelphis virginiana). Anat Anz 169:267-271 Adrian TE, Besterman HS, Mallinson CN, Greenberg GR, Bloom SR (1978) Inhibition of secretin stimulated pancreatic secretion by pancreatic polypeptide. Gut 20:37-40 Ahonen A (1973) Histochemical and electron microscopic observations on the development, neural control and function of the Paneth cells of the mouse. Acta Physiol Scand [Suppl] 398:1-71 Ahonen A, PenttiHi A (1975a) Effect of Trasylol on Paneth cells of the mouse. Experientia 31:577-578 Ahonen A, Penttilii A (1975b) Effects of glucagon and insulin on the Paneth cells of the mouse duodenum. Experientia 31:1074-1075 Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland, New York AI-Nafussi AI, Wright NA (1982) Cell kinetics in the mouse small intestine during immediate postnatal life.
    [Show full text]
  • Gastrointestinal
    152A ANNUAL MEETING ABSTRACTS 627 IQGAP1 Copy Number in Follicular-Patterned Lesions of the dysplastic BE and EAC from the resection specimens were reviewed and area with Thyroid – A Pilot Study more than 80% of lesion was macrodissected from the frozen block followed by DNA AE Walts, A Riley-Portuges, S Bose. Cedars-Sinai Medical Center, Los Angeles, CA. extraction using TRIzol Reagent (Life Technologies, CA) with post-PCR purifi cation. Background: The accuracy and reproducibility of the diagnosis of follicular-patterned Microarray analysis was performed using bacterial artifi cial chromosome (BAC) DNA thyroid lesions (FPTL) is currently limited by subjective morphological criteria microarrays (Constitutional Chip 4.0, PerkinElmer, Finland). This microarray has over and diffi culties in assessing capsular integrity and vascular invasion. IQGAP1 is a 5200 BAC clones, including targeted coverage in well-characterized chromosomal widely conserved multifunctionl protein currently thought to play an important role regions, subtelomeric regions, and pericentromeric regions, as well as backbone in cell polarity, adhesion, migration and proliferation through regulation of the actin coverage of the genome with an average resolution of 0.5 Mb. DNA extracted from microtubule cytoskeleton, transmembrane traffi cking, and intracellular signaling. either BE or EAC tissue was analyzed using DNA from squamous mucosa from the IQGAP1 genetic copy gain has recently been reported in association with increased same patient as a reference. Arrays were scanned at 10 microns using a ScanArray Gx invasiveness in some thyroid tumors. This pilot study was designed to explore the scanner (PerkinElmer) and analyzed using GenePix Pro 6.1 (Molecular Devices, CA). potential role of IQGAP1 copy number (CN) in the diagnosis of FPTL.
    [Show full text]
  • Nomina Histologica Veterinaria
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Digestive System
    Chapter 25 *Lecture PowerPoint The Digestive System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before the body can make use of them • Digestive system—essentially a disassembly line – To break down nutrients into a form that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes Cont. – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—the organ system that processes food, extracts nutrients from it, and eliminates the residue 25-5 Digestive Function • Five stages of digestion – Ingestion: selective intake of
    [Show full text]
  • Histology of the Blood Vessels
    + Motivational Corner: “Step through new doors. The majority of the time there's something fantastic on the other side.” Objectives: 1- By the end of this lecture, the student should be able to discuss Integrated Esophagus the microscopic structure in & stomach. correlation with the function of the following organs: 1. Esophagus. 2. Stomach. Extra notes: Gray Important notes: Red + Alimentary Canal Is the tubular portion of digestive system. Subdivided into Large intestine Small intestine (cecum, colon, Esophagus. Stomach. (duodenum, rectum, anal canal, jejunum and ileum). and appendix). Mucosa. General or Serosa Architecture Submucosa. of L/M Structure of Alimentary Muscularis externa. Canal Adventitia OR serosa. + Esophagus ■ Four concentric layers: Mucosa Submucosa Muscularis Serosa or externa Adventitia Epithelial Lining: • Loose areolar C.T. • Two muscle layers: • Adventitia: is loose Non-Keratinized containing blood 1-Inner circular layer. areolar C.T. not Stratified Squamous vessels, nerves, 2-Outer longitudinal layer. covered by Epithelium. submucosal mesothelium. esophageal glands • Upper 1/3: both layers In the thoracic part of are skeletal M. Lamina propria: (secretion of mucus) the esophagus. Loose areolar C.T. with • Middle 1/3: inner layer is smooth muscle mucosal esophageal • Meissner’s plexus glands (secretion of • Outer layer is skeletal • Serosa: is loose of nerve fibers and mucus) in the upper and M. areolar C.T. covered nerve cells. • Lower 1/3: both layers lower ends. by mesothelium are smooth M. (simple squamous • Auerbach’s Muscularis mucosae: (myenteric) plexus in epithelium) Few layers of smooth between the 2 layers in the abdominal part muscle fibers. of the esophagus. Serosa Submucosal esophageal gland Auerbach’s plexua + Stomach It has 4 regions: Mucosa has folds, • Cardia known as rugae • Fundus • Body that disappear in • Pylorus the distended stomach.
    [Show full text]
  • Risk Factors and Pathological Characteristics for Intraductal Tumor
    www.nature.com/scientificreports OPEN Risk factors and pathological characteristics for intraductal tumor spread of submucosal gland in early esophageal squamous cell neoplasia Wen-Lun Wang1,2,7, I-Wei Chang 3,4,5,7, Ming-Hung Hsu2, Tzu-Haw Chen2, Chao-Ming Tseng 2, Cheng-Hao Tseng 2, Chi-Ming Tai2, Hsiu-Po Wang6 ✉ & Ching-Tai Lee2 ✉ The esophageal gland duct may serve as a pathway for the spread of early esophageal squamous cell neoplasia (ESCN) to a deeper layer. Deep intraductal tumor spreading cannot be completely eradicated by ablation therapy. However, the risk factors of ductal involvement (DI) in patients with ESCNs have yet to be investigated. We consecutively enrolled 160 early ESCNs, which were treated with endoscopic submucosal dissection. The resected specimens were reviewed for the number, morphology, resected margin, distribution and extension level of DI, which were then correlated to clinical factors. A total of 317 DIs (median:3, range 1–40 per-lesion) in 61 lesions (38.1%) were identifed. Of these lesions, 14 have DIs maximally extended to the level of lamina propria mucosa, 17 to muscularis mucosae, and 30 to the submucosa. Multivariate logistic regression analysis showed that tumors located in the upper esophagus (OR = 2.93, 95% CI, 1.02–8.42), large tumor circumferential extension (OR = 5.39, 95% CI, 1.06–27.47), deep tumor invasion depth (OR = 4.12, 95% CI, 1.81–9.33) and numerous Lugol-voiding lesions in background esophageal mucosa (OR = 2.65, 95% CI, 1.10–6.37) were risk factors for DI. The maximally extended level of ducts involved were signifcantly correlated with the cancer invasion depth (P < 0.05).
    [Show full text]
  • The Barrett's Gland in Phenotype Space
    REVIEW The Barrett’s Gland in Phenotype Space Stuart A. C. McDonald,1 Trevor A. Graham,1 Danielle L. Lavery,1 Nicholas A. Wright,1 and Marnix Jansen1,2 1Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; and 2Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands SUMMARY Recent progress has seen a step-change in our knowl- edge of the changes in the genotype of Barrett’s gland with This review addresses the scope of phenotypic diversity time. Where initially we thought that Barrett’s segments within Barrett’s esophagus. Although often under- progressed to malignancy through a number of clonal se- emphasized, the authors argue that this diversity may be key lective sweeps in well-defined genes,3 it has recently to understanding Barrett’s initiation and progression. become clear that such selective sweeps, where mutations spread clonally throughout the segment and become “fixed,” are rare indeed. Many patients with Barrett’s esophagus Barrett’s esophagus is characterized by the erosive maintain an equilibrium level of genetic alter- replacement of esophageal squamous epithelium by a ations—stasis—over time, but sometimes with infrequent range of metaplastic glandular phenotypes. These glan- but significant genetic change or punctuation caused by dular phenotypes likely change over time, and their dis- growth of clones with huge numbers of genetic alter- tribution varies along the Barrett’s segment. Although ations.2,4
    [Show full text]