1 | Page: Digestive Histology Part 1 Swailes Histology of the Digestive

Total Page:16

File Type:pdf, Size:1020Kb

1 | Page: Digestive Histology Part 1 Swailes Histology of the Digestive Histology of the Digestive System I Oral cavity, Esophagus and Stomach N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 15: pp249-259 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 16: pp526-567 Learning objectives 1) Recognize and name the major layers and components of the generalized gut tube. 2) Examine oral mucosa and determine how it is structurally different from both skin and the generalized gut tube. 3) Determine that different regions of the oral cavity have different types of oral mucosa and these are reflective of the function of each region. 4) Identify the histological features of the esophagus and explain the functional role of each in the process of digestion. 5) Identify the histological features of the stomach and explain the functional role of each in the process of digestion. Key terms mucosa esophageal cardiac gland parietal (oxyntic) cell submucosa esophageal gland intrinsic factor Meissner’s plexus stomach chief (zymogenic) cell muscularis externa cardia pepsinogen Auerbach’s (myenteric) fundus pepsin plexus body rennin/chymosin adventitia pylorus somatostatin serosa gastric pit ghrelin oral cavity gastric gland gastrin masticatory mucosa cardiac gland D-cell specialized mucosa principal gland G-cell lining mucosa pyloric gland Ghr-cell lingual papilla surface mucous cell enteroendocrine cell esophagus neck mucous cell cardio-esophageal junction 1 | Page: Digestive Histology Part 1 Swailes Introduction During this lecture you will discover the general structure of the digestive tract and examine the first part of the digestive tract where the primary role is mastication. A1: General structure of the digestive tract A. Mucosa The mucosa is composed of an epithelium and its basement membrane, the underlying lamina propria and a muscularis mucosa. 1. Epithelium - is either stratified squamous (protective) or simple columnar (absorptive). - may contain specialized cells that impart specific functional properties to a region. - often invaginates to form glands for secretion. - often evaginates to form ‘villi’ to maximize surface area for absorption. 2. Lamina propria - composed of loose irregular connective tissue - contains blood vessels, lymphatic vessels and glands - has Mucosa Associated Lymphoid Tissues (MALT) in the form of lymphoid nodules. 3. Muscularis mucosae - is a layer of smooth muscle that moves independently of the muscularis externa. - it is absent from the oral cavity and anal canal. 1 A 2 3 B 4 5 C 6 7 2 | Page: Digestive Histology Part 1 Swailes D 8 B. Submucosa A region of dense irregular connective tissue which contains the blood vessels and lymphatic vessels that supply and drain the lamina propria. In addition to glands and MALT it contains: 4. Meissner’s (submucosal) plexus - contains sympathetic fibers and post-ganglionic parasympathetic neurons (ganglion cells) - innervates muscularis mucosa, secretory and sensory cells of the epithelium. C. Muscularis externa 5. Inner circular - typically a layer of smooth muscle - oral cavity and esophagus are completely or partially composed of skeletal muscle instead. 6. Auerbach’s (myenteric) plexus - located between the two layers of m. externa and innervates them. - it has the same components as Meissner’s plexus. Clinical Correlation: Hirschprung disease Hirschprung disease is a congenital disease (the ganglia are derived from the neural crest) of the bowel where Meissner’s plexus and Auerbach’s plexus are absent from a length of the distal colon As a result there is an imbalance of smooth muscle contractility in the affected region of bowel and it is unable to relax. The result is extreme constipation and dilation of the region proximal to the affected bowel (e.g. megacolon). Treatment involves surgical resection of the affected area. 7. Outer longitudinal - typically a layer of smooth muscle. - oral cavity and esophagus are completely or partially composed of skeletal muscle instead. - forms a thickened region of skeletal muscle in anal canal called the external anal sphincter. Note: The stomach has an additional oblique layer of smooth muscle in its externa. D. Serosa or Adventitia The outer region of the gut tube consists of loose irregular connective tissue. - if the region of the tube is covered in peritoneum, the peritoneal mesothelium can be seen adhered to this connective tissue and it is termed a ‘serosa’. - if the region of the tube is retroperitoneal the mesothelium will be absent and the layer is termed an ‘adventitia’. 3 | Page: Digestive Histology Part 1 Swailes A2: Oral cavity The oral cavity is the site of mastication, mixing of food with saliva and commencement of the breakdown of carbohydrate. It is composed of the following areas: 1. Hard palate 2. Soft palate 3. Tongue 4. Teeth 1 5. Gingiva (gums) 6. Lip 2 A. Oral mucosa There are three regions of oral mucosa (stratified squamous epithelium + lamina propria) found in the oral cavity: 3 1. Masticatory - keratinized or parakeratinized - withstand the forces of chewing 4 - hard palate and gingiva 2. Specialized 5 - keratinized with papillae - dorsal surface of the tongue 3. Lining 6 - non-keratinized - robust and flexible - cheeks, inner lip, soft palate etc. ** Note that oral mucosa DOES NOT have a Clinical Correlation: Aphthous stomatitis muscularis mucosa! Aphthous stomatitis (also known as canker sores) occur only in lining mucosa (non-keratinized). The cause of these ulcers is unknown but citrus fruits, physical trauma and stress have been implicated in Clinical Correlation: Oral squamous cell carcinoma their development. Oral squamous cell carcinoma affects around 30,000 Americans each year. It can occur anywhere in the oral cavity, but it is most common in certain areas of Clinical Correlation: Cold sores the lining mucosa: floor of the mouth, ventral and Cold sores are a result of herpes simplex virus-1 lateral surfaces of the tongue and the soft palate. The infection which only occurs in keratinized chief risk factors for this cancer are smoking and epithelium. It presents as visible sores or ulceration. alcohol use. Surgery and radiation therapy are the A cure for the condition has not been developed. treatments of choice. Once infected the virus remains in the body for life and recurrent outbreaks may occur. 4 | Page: Digestive Histology Part 1 Swailes B. Tongue The tongue is composed mostly of intrinsic skeletal muscle fibers arranged in longitudinal, transverse and vertical bundles. Its dorsum is covered in 1 specialized mucosa and the remainder is covered in lining mucosa. Lingual papillae 1. Filiform - most numerous 2 - no taste buds - very thick keratin layer 2. Fungiform - less numerous and irregularly arranged - contain taste buds - lightly keratinized 3. Circumvallate - 7-12 papillae in front of terminal sulcus 3 - contain taste buds - serous glands of von Ebner cleanse taste buds 4. Foliate - poorly developed in humans - contain taste buds - located in postero-lateral surface of tongue Taste buds Specialized regions of the oral mucosa that contain: 4 5. Taste pore - molecules dissolved in saliva enter the taste pore 6. Gustatory microvilli - bind to receptors on the gustatory microvilli 7. Gustatory cell 7 - depolarizes the gustatory cell 6 9 8. CN VII (chordae tympani) or CNIX - transmit signals to the brain 5 9. Basal cell - stem cell population that replaces old/damaged gustatory cells 8 10. Serous glands of von Ebner (not shown) - secretions from these submucosal glands wash away food particles around the taste buds so that they can process new uncontaminated tastes 5 | Page: Digestive Histology Part 1 Swailes A3: Esophagus The esophagus is a muscular tube through which food is carried from the pharynx to the stomach. i. Mucosa 1. Non-keratinized stratified squamous epithelium 1 - resists abrasive forces of bolus during swallowing. 2. Lamina propria 2 Loose irregular connective tissue containing: Cardiac esophageal glands (not shown) - mucous secreting glands located in distal region of the esophagus near stomach. Lymphoid aggregates (not shown) - MALT (Mucosa Associated Lymphoid Tissue 3. Muscularis mucosae - typical layer of circumscribing smooth muscle. 3 ii. Submucosa Dense irregular connective tissue containing: 4. Esophageal glands - small mucous-secreting glands - lubricates epithelium and assists in the 4 passage of the bolus. iii. Muscularis externa 5. Inner circular muscle 6. Outer longitudinal muscle 5 Note the type of muscle in the esophagus varies: rd - upper 1/3 is skeletal only. 6 rd - middle 1/3 is mixed smooth and skeletal. rd - lower 1/3 is smooth only. This organization reflects the fact that swallowing begins with a controlled motion (skeletal) and progresses to involuntary peristalsis (smooth). iv. Adventitia/Serosa 7. Mesothelium (or not) At the esophageal hiatus (T10) the esophagus becomes covered in peritoneum (mesothelium) this is a serosa. Above this, there is no mesothelium just 7 connective tissue, this is an adventitia. 6 | Page: Digestive Histology Part 1 Swailes B A4: The Stomach The stomach is responsible for both mechanical and chemical digestion. It continues the digestion of carbohydrates, initiates the digestion of proteins and A produces the viscous chyme. D There are four distinct regions of the stomach: A. Cardia B. Fundus C. Body C D. Pylorus Organization of the stomach wall i. Mucosa 1. Simple columnar epithelium - produce
Recommended publications
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Aandp2ch25lecture.Pdf
    Chapter 25 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before body can make use of them • Digestive system—acts as a disassembly line – To break down nutrients into forms that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes (Continued) – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—organ system that processes food, extracts nutrients, and eliminates residue • Five stages of digestion – Ingestion: selective intake of food – Digestion: mechanical and chemical breakdown of food into a form usable by
    [Show full text]
  • 組織學實驗:消化系統 I Histology Laboratory : Digestive System I
    組織學實驗:消化系統 I Histology laboratory : Digestive system I 實驗講義 : 陳世杰 老師 Shih-Chieh Chen, PhD. 張瀛双 Ying-Shuang Chang 李怡琛 Yi-Chen Lee 張昭元 Chao-Yuah Chang 劉俊馳 Chun-Chih Liu :07-3121101 ext 2144-18 :[email protected] Please study these slides before coming to the class! Sources of the Pictures & Text Wheater’s Functional Histology (4th ed) B. Young & J. W. Heath Histology: A Text and Atlas (4th ed) M.H. Ross & W. Pawlina Photomicrograph Taken by Department of anatomy, Kaohsiung Medical University Learning Objective Microscopic structure of digestive system 93W6748 Esophagus, Middle portion, human (cs) H&E 93W6746 Esophagus, Upper portion, human (cs) H&E 93W4875 Trachea and Esophagus (cs) H&E 93W4506 Esophagus and stomach (ls) H&E 93W4508 Stomach, composite (sec.) H&E 93W4522 Stomach and Duodenum (ls) H&E 93W4523 Digestive system, Composite (sec.) H&E Wheater’s Functional Histology Learning Objective • To understand the basic structural organization of the wall of alimentary tube. • Identify the esophagus, the stomach and the small intestine. • Identify the upper, middle, and lower portion of the esophagus. • Identify the duodenum, jejunum, and ileum of the small intestine. V M S ME A Fig 1. 93W6748 Esophagus, middle M: Mucosa S: Submucosa ME: Muscularis externa A: Adventitia portion, human, H&E V: Vessels Fig 1. 93W6748 Esophagus, middle portion, human, H&E. The portion of the alimentary canal that extends from the proximal part of the esophagus to the distal part of the anal canal is a hollow tube of varying diameter. This tube has the same basic structural organization throughout its length.
    [Show full text]
  • Studies on the Morphology and Life History of Nematodes in the Genus Spironoura
    THE UNIVERSITY OF ILLINOIS LIBRARY 370.5 JLL- Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/studiesonmorphol14mack ILLINOIS BIOLOGICAL MONOGRAPHS 3 Vol. XIV No - Published by the University of Illinois Under the Auspices of the Graduate School Urbana, Illinois EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny UNIVERSITY OP ILLINOIS 1000—7-36—5800 " PI,E£S " STUDIES ON THE MORPHOLOGY AND LIFE HISTORY OF NEMATODES IN THE GENUS SPIRONOURA WITH FIVE PLATES AND TWO TEXT-FIGURES By John Gilman Mackin Contribution from the Zoological Laboratory of the University of Illinois No. 484 Distributed August 25, 1936 CONTENTS I. Introduction 7 II. Anatomy of Spironoura chelydrae (Harwood) 1932. ... 7 General External Morphology 7 Lip Supports 10 Digestive System 12 Female Reproductive System 26 Male Reproductive System 31 Musculature 33 Excretory System 36 III. Descriptions of New Species 37 Generic Diagnosis 37 Spironoura wardi n. sp 39 Spironoura concinnae n. sp 41 Key to the North American Species of Spironoura. 43 IV. Observations on Growth and Variation 44 V. Summary 48 Plates 49 Bibliographical References 62 I. INTRODUCTION Few extensive studies have been made on the anatomy and growth variations of nematodes, and these have been confined so largely to isolated and economic forms that nothing like a comprehensive knowledge of the group as a whole is available. Thus it has been deemed worth while to extend our knowledge through study of a form not too nearly related to the Ascarids, Oxyurids, and Ancylostomas, already well known.
    [Show full text]
  • The Esophageal Gland Mediates Host Immune Evasion by the Human
    The esophageal gland mediates host immune evasion FROM THE COVER by the human parasite Schistosoma mansoni Jayhun Leea, Tracy Chonga,b, and Phillip A. Newmarka,b,c,1 aRegenerative Biology, Morgridge Institute for Research, Madison, WI 53715; bHoward Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53715; and cDepartment of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved June 30, 2020 (received for review April 7, 2020) Schistosomes are parasitic flatworms that cause schistosomiasis, a Within the snail host, cercariae develop organs necessary for neglected tropical disease affecting over 200 million people. infection (e.g., penetration glands) and primordia of organs (e.g., Schistosomes develop multiple body plans while navigating their the digestive tract) required during the next parasitic stage complex life cycle, which involves two different hosts: a mamma- (Fig. 1B). Cercariae also contain approximately five to six stem lian definitive host and a molluscan intermediate host. Their cells that are localized stereotypically: one pair of cells on each survival and propagation depend upon proliferation and differen- side, and one cell medially (7). Previously, we showed that upon tiation of stem cells necessary for parasite homeostasis and infection of the mammalian host and transformation into schis- reproduction. Infective larvae released from snails carry a handful tosomula, these cells begin to proliferate (7), but the fates of of stem cells that serve as the likely source of new tissues as the their progeny were unexplored. In this work, we examine the parasite adapts to life inside the mammalian host; however, the contributions of these stem cells to early intramammalian de- role of these stem cells during this critical life cycle stage remains velopment.
    [Show full text]
  • The Esophageal Gland Mediates Host Immune Evasion by the Human Parasite Schistosoma Mansoni
    The esophageal gland mediates host immune evasion by the human parasite Schistosoma mansoni Jayhun Leea, Tracy Chonga,b, and Phillip A. Newmarka,b,c,1 aRegenerative Biology, Morgridge Institute for Research, Madison, WI 53715; bHoward Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53715; and cDepartment of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved June 30, 2020 (received for review April 7, 2020) Schistosomes are parasitic flatworms that cause schistosomiasis, a Within the snail host, cercariae develop organs necessary for neglected tropical disease affecting over 200 million people. infection (e.g., penetration glands) and primordia of organs (e.g., Schistosomes develop multiple body plans while navigating their the digestive tract) required during the next parasitic stage complex life cycle, which involves two different hosts: a mamma- (Fig. 1B). Cercariae also contain approximately five to six stem lian definitive host and a molluscan intermediate host. Their cells that are localized stereotypically: one pair of cells on each survival and propagation depend upon proliferation and differen- side, and one cell medially (7). Previously, we showed that upon tiation of stem cells necessary for parasite homeostasis and infection of the mammalian host and transformation into schis- reproduction. Infective larvae released from snails carry a handful tosomula, these cells begin to proliferate (7), but the fates of of stem cells that serve as the likely source of new tissues as the their progeny were unexplored. In this work, we examine the parasite adapts to life inside the mammalian host; however, the contributions of these stem cells to early intramammalian de- role of these stem cells during this critical life cycle stage remains velopment.
    [Show full text]
  • Bbm:978-3-642-77287-0/1.Pdf
    Appendix The figure (., data obtained from litters born in captivity; ., data from litters born in the wild. Each point on the curve is the mean for 3-9 animals.) shown below (from Cutts et at. 1978b) relates body length (snout-pump length) to age for the first 106 days of postnatal life. During the first 10 weeks, growth is linear and the increase in length is remarkably constant regardless of litter size or sex. 220 · ~ ·• 210 200 ¥ / ! 180- 110 / • J 150 I I • .1 _ 120 J J no 7 ~jlo ,/ ./ 90 V /' 7 ./ / 50 V 40 V V V I 7 10 2' 28 l5 02 49 56 63 70 77 84 91 98 '05 Age (days) 129 References Acuff ME, Krause WJ, Cutts JH (1989) The cardiac, oxyntic and pyloric glands in the developing opossum (Didelphis virginiana). Anat Anz 169:267-271 Adrian TE, Besterman HS, Mallinson CN, Greenberg GR, Bloom SR (1978) Inhibition of secretin stimulated pancreatic secretion by pancreatic polypeptide. Gut 20:37-40 Ahonen A (1973) Histochemical and electron microscopic observations on the development, neural control and function of the Paneth cells of the mouse. Acta Physiol Scand [Suppl] 398:1-71 Ahonen A, PenttiHi A (1975a) Effect of Trasylol on Paneth cells of the mouse. Experientia 31:577-578 Ahonen A, Penttilii A (1975b) Effects of glucagon and insulin on the Paneth cells of the mouse duodenum. Experientia 31:1074-1075 Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland, New York AI-Nafussi AI, Wright NA (1982) Cell kinetics in the mouse small intestine during immediate postnatal life.
    [Show full text]
  • Gastrointestinal
    152A ANNUAL MEETING ABSTRACTS 627 IQGAP1 Copy Number in Follicular-Patterned Lesions of the dysplastic BE and EAC from the resection specimens were reviewed and area with Thyroid – A Pilot Study more than 80% of lesion was macrodissected from the frozen block followed by DNA AE Walts, A Riley-Portuges, S Bose. Cedars-Sinai Medical Center, Los Angeles, CA. extraction using TRIzol Reagent (Life Technologies, CA) with post-PCR purifi cation. Background: The accuracy and reproducibility of the diagnosis of follicular-patterned Microarray analysis was performed using bacterial artifi cial chromosome (BAC) DNA thyroid lesions (FPTL) is currently limited by subjective morphological criteria microarrays (Constitutional Chip 4.0, PerkinElmer, Finland). This microarray has over and diffi culties in assessing capsular integrity and vascular invasion. IQGAP1 is a 5200 BAC clones, including targeted coverage in well-characterized chromosomal widely conserved multifunctionl protein currently thought to play an important role regions, subtelomeric regions, and pericentromeric regions, as well as backbone in cell polarity, adhesion, migration and proliferation through regulation of the actin coverage of the genome with an average resolution of 0.5 Mb. DNA extracted from microtubule cytoskeleton, transmembrane traffi cking, and intracellular signaling. either BE or EAC tissue was analyzed using DNA from squamous mucosa from the IQGAP1 genetic copy gain has recently been reported in association with increased same patient as a reference. Arrays were scanned at 10 microns using a ScanArray Gx invasiveness in some thyroid tumors. This pilot study was designed to explore the scanner (PerkinElmer) and analyzed using GenePix Pro 6.1 (Molecular Devices, CA). potential role of IQGAP1 copy number (CN) in the diagnosis of FPTL.
    [Show full text]
  • Nomina Histologica Veterinaria
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Digestive System
    Chapter 25 *Lecture PowerPoint The Digestive System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Most nutrients we eat cannot be used in existing form – Must be broken down into smaller components before the body can make use of them • Digestive system—essentially a disassembly line – To break down nutrients into a form that can be used by the body – To absorb them so they can be distributed to the tissues • Gastroenterology—the study of the digestive tract and the diagnosis and treatment of its disorders 25-2 General Anatomy and Digestive Processes • Expected Learning Outcomes – List the functions and major physiological processes of the digestive system. – Distinguish between mechanical and chemical digestion. – Describe the basic chemical process underlying all chemical digestion, and name the major substrates and products of this process. 25-3 General Anatomy and Digestive Processes Cont. – List the regions of the digestive tract and the accessory organs of the digestive system. – Identify the layers of the digestive tract and describe its relationship to the peritoneum. – Describe the general neural and chemical controls over digestive function. 25-4 Digestive Function • Digestive system—the organ system that processes food, extracts nutrients from it, and eliminates the residue 25-5 Digestive Function • Five stages of digestion – Ingestion: selective intake of
    [Show full text]
  • Histology of the Blood Vessels
    + Motivational Corner: “Step through new doors. The majority of the time there's something fantastic on the other side.” Objectives: 1- By the end of this lecture, the student should be able to discuss Integrated Esophagus the microscopic structure in & stomach. correlation with the function of the following organs: 1. Esophagus. 2. Stomach. Extra notes: Gray Important notes: Red + Alimentary Canal Is the tubular portion of digestive system. Subdivided into Large intestine Small intestine (cecum, colon, Esophagus. Stomach. (duodenum, rectum, anal canal, jejunum and ileum). and appendix). Mucosa. General or Serosa Architecture Submucosa. of L/M Structure of Alimentary Muscularis externa. Canal Adventitia OR serosa. + Esophagus ■ Four concentric layers: Mucosa Submucosa Muscularis Serosa or externa Adventitia Epithelial Lining: • Loose areolar C.T. • Two muscle layers: • Adventitia: is loose Non-Keratinized containing blood 1-Inner circular layer. areolar C.T. not Stratified Squamous vessels, nerves, 2-Outer longitudinal layer. covered by Epithelium. submucosal mesothelium. esophageal glands • Upper 1/3: both layers In the thoracic part of are skeletal M. Lamina propria: (secretion of mucus) the esophagus. Loose areolar C.T. with • Middle 1/3: inner layer is smooth muscle mucosal esophageal • Meissner’s plexus glands (secretion of • Outer layer is skeletal • Serosa: is loose of nerve fibers and mucus) in the upper and M. areolar C.T. covered nerve cells. • Lower 1/3: both layers lower ends. by mesothelium are smooth M. (simple squamous • Auerbach’s Muscularis mucosae: (myenteric) plexus in epithelium) Few layers of smooth between the 2 layers in the abdominal part muscle fibers. of the esophagus. Serosa Submucosal esophageal gland Auerbach’s plexua + Stomach It has 4 regions: Mucosa has folds, • Cardia known as rugae • Fundus • Body that disappear in • Pylorus the distended stomach.
    [Show full text]
  • Risk Factors and Pathological Characteristics for Intraductal Tumor
    www.nature.com/scientificreports OPEN Risk factors and pathological characteristics for intraductal tumor spread of submucosal gland in early esophageal squamous cell neoplasia Wen-Lun Wang1,2,7, I-Wei Chang 3,4,5,7, Ming-Hung Hsu2, Tzu-Haw Chen2, Chao-Ming Tseng 2, Cheng-Hao Tseng 2, Chi-Ming Tai2, Hsiu-Po Wang6 ✉ & Ching-Tai Lee2 ✉ The esophageal gland duct may serve as a pathway for the spread of early esophageal squamous cell neoplasia (ESCN) to a deeper layer. Deep intraductal tumor spreading cannot be completely eradicated by ablation therapy. However, the risk factors of ductal involvement (DI) in patients with ESCNs have yet to be investigated. We consecutively enrolled 160 early ESCNs, which were treated with endoscopic submucosal dissection. The resected specimens were reviewed for the number, morphology, resected margin, distribution and extension level of DI, which were then correlated to clinical factors. A total of 317 DIs (median:3, range 1–40 per-lesion) in 61 lesions (38.1%) were identifed. Of these lesions, 14 have DIs maximally extended to the level of lamina propria mucosa, 17 to muscularis mucosae, and 30 to the submucosa. Multivariate logistic regression analysis showed that tumors located in the upper esophagus (OR = 2.93, 95% CI, 1.02–8.42), large tumor circumferential extension (OR = 5.39, 95% CI, 1.06–27.47), deep tumor invasion depth (OR = 4.12, 95% CI, 1.81–9.33) and numerous Lugol-voiding lesions in background esophageal mucosa (OR = 2.65, 95% CI, 1.10–6.37) were risk factors for DI. The maximally extended level of ducts involved were signifcantly correlated with the cancer invasion depth (P < 0.05).
    [Show full text]