The Esophageal Gland Mediates Host Immune Evasion by the Human Parasite Schistosoma Mansoni

Total Page:16

File Type:pdf, Size:1020Kb

The Esophageal Gland Mediates Host Immune Evasion by the Human Parasite Schistosoma Mansoni The esophageal gland mediates host immune evasion by the human parasite Schistosoma mansoni Jayhun Leea, Tracy Chonga,b, and Phillip A. Newmarka,b,c,1 aRegenerative Biology, Morgridge Institute for Research, Madison, WI 53715; bHoward Hughes Medical Institute, University of Wisconsin–Madison, Madison, WI 53715; and cDepartment of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53715 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved June 30, 2020 (received for review April 7, 2020) Schistosomes are parasitic flatworms that cause schistosomiasis, a Within the snail host, cercariae develop organs necessary for neglected tropical disease affecting over 200 million people. infection (e.g., penetration glands) and primordia of organs (e.g., Schistosomes develop multiple body plans while navigating their the digestive tract) required during the next parasitic stage complex life cycle, which involves two different hosts: a mamma- (Fig. 1B). Cercariae also contain approximately five to six stem lian definitive host and a molluscan intermediate host. Their cells that are localized stereotypically: one pair of cells on each survival and propagation depend upon proliferation and differen- side, and one cell medially (7). Previously, we showed that upon tiation of stem cells necessary for parasite homeostasis and infection of the mammalian host and transformation into schis- reproduction. Infective larvae released from snails carry a handful tosomula, these cells begin to proliferate (7), but the fates of of stem cells that serve as the likely source of new tissues as the their progeny were unexplored. In this work, we examine the parasite adapts to life inside the mammalian host; however, the contributions of these stem cells to early intramammalian de- role of these stem cells during this critical life cycle stage remains velopment. Based on the unexpected finding that stem cells unclear. Here, we characterize stem cell fates during early intra- contribute to development of an accessory digestive organ, the mammalian development. Surprisingly, we find that the esopha- esophageal gland, before the rest of the digestive system is geal gland, an accessory organ of the digestive tract, develops formed, we characterize the gland’s function in vivo, revealing a before the rest of the digestive system is formed and blood mechanism for evasion of the host immune system. feeding is initiated, suggesting a role in processes beyond nutrient uptake. To explore such a role, we examine schistosomes that lack Results DEVELOPMENTAL BIOLOGY the esophageal gland due to knockdown of a forkhead-box tran- Stem Cells in Early Schistosomula Generate Parasite–Host Interfaces. Sm-foxA scription factor, , which blocks development and mainte- In flatworms, differentiated cells do not proliferate; thus, genes nance of the esophageal gland, without affecting the development regulated in a cell cycle-dependent manner, such as histone 2b of other somatic tissues. Intriguingly, schistosomes lacking the (h2b), can be used as generic stem cell markers (6, 15–17). Using esophageal gland die after transplantation into naive mice, but h2b as a marker of these cells in cercariae (Fig. 1C) and schis- survive in immunodeficient mice lacking B cells. We show that tosomula (Fig. 1D), we tracked their behavior by examining in- parasites lacking the esophageal gland are unable to lyse ingested corporation of 5-ethynyl-2′-deoxyuridine (EdU) in pulse-chase immune cells within the esophagus before passing them into the experiments either during in vitro transformation or in vivo (SI gut. These results unveil an immune-evasion mechanism mediated Appendix, Fig. S1A and Materials and Methods). The number of by the esophageal gland, which is essential for schistosome survival (h2b+) stem cells remained unchanged during 1 wk of in vitro and pathogenesis. culture, analogous to lung-stage in vivo schistosomula (Fig. 1D), stem cells | host–parasite interaction | foxA | intramammalian parasite development | parasitic helminths Significance chistosomes are parasitic flatworms that cause schistosomi- Schistosomes are parasitic flatworms infecting hundreds of Sasis, a neglected tropical disease affecting over 200 million millions of people. As they alternate between mammalian and individuals (1). Schistosomes reside in the vasculature of a wide molluscan hosts, their survival and propagation depend upon stem cell proliferation and differentiation. Tracking the fate of range of vertebrate hosts; there, they lay eggs that cause in- these stem cells during early intramammalian development, flammation and damage to host tissues, leading to schistosomi- we find that the esophageal gland, an accessory digestive or- asis (2). Their complex life cycle requires passage through gan, develops before the rest of the digestive system is formed molluscan and mammalian hosts (Fig. 1A): aquatic snails release and feeding begins, suggesting a role for this organ beyond cercariae, free-living, infective larvae that swim to find and nutrient uptake. We show that schistosomes lacking the penetrate mammalian host skin. Upon infection, the cercarial esophageal gland die in naive mice but survive in immunode- tail is lost at the infection site, and the parasite body transforms ficient mice lacking B cells; they are unable to lyse ingested into a schistosomulum. This early intramammalian-stage parasite immune cells before passing them into the gut. These results immediately faces major challenges as it adapts to this new host unveil an immune-evasion mechanism, which is essential for environment: it must migrate from the skin into the bloodstream, schistosome survival and pathogenesis. then through the lungs, to reach its niche in the hepatic vascu- Author contributions: J.L. and P.A.N. designed research; J.L. and T.C. performed research; lature (3). There, it will begin feeding on blood, which fuels J.L. analyzed data; and J.L. and P.A.N. wrote the paper. growth, sexual maturation, and reproduction. Failure at any step The authors declare no competing interest. would disrupt the life cycle, yet it manages these challenges, even This article is a PNAS Direct Submission. in the face of the host’s immune system (4, 5). Recent work has This open access article is distributed under Creative Commons Attribution-NonCommercial- identified heterogeneous populations of schistosome stem cells NoDerivatives License 4.0 (CC BY-NC-ND). – (6 10) and described their roles in asexual reproduction (7, 11), 1To whom correspondence may be addressed. Email: [email protected]. ’ tegument (the parasite s outer surface) production during ho- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ meostasis (12, 13), and germ cell development (7, 8, 10, 14). Thus, doi:10.1073/pnas.2006553117/-/DCSupplemental. stem cells help drive schistosome viability and transmission. First published July 31, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2006553117 PNAS | August 11, 2020 | vol. 117 | no. 32 | 19299–19309 Downloaded by guest on September 24, 2021 A B water sporocysts egg mouth opening (m) esophagus (e) eg primordial vs esophageal gland (eg) (meg4.1+) body ventral schistosomulum sucker (vs) miracidium primordial gut (g) (cathepsin B+) X tail Schistosoma mansoni life cycle m gut e eg cercaria g germinal schistosomulum juvenile adult male female vs intra-mammalian cells skin lung mesenteric veins 50 μm development 0-3 days ~1 week ~2-4 weeks > 5 weeks DAPI PNA phalloidin merge C h2b DAPI D E 20 n.s 10 cells 15 h2b+ 10 5 M 5 number of total EdU+ cells 0 number of 01234 vs 0 R L cercariae D3 D7 D7 days of continuous EdU labeling 10 μm - D1 - D6 - D11 (lung) N (worms) 11 11 10 11 F h2b EdU DAPI EdU pulse: D0-D3; chase 4 days G tsp2 EdU DAPI EdU pulse: D0-D3; chase 4 days *p=0.0002 50 of total EdU+ cells of total tsp2+ cells 100 *p=0.01 *p=0.02 of total EdU+ cells of total h2b+ cells 25 n.s 50 +EdU+ cells +EdU+ cells tsp2 h2b % % 0 0 D3 D7 D3 D7 10 μm days post-transformation D3 D7 D3 D7 10 μm days post-transformation N = 10 12 N = 10 12 H meg4.1 cathepsin B DAPI I EdU DAPI (lung stage, D8) 1 1 2 12meg4.1 cathepsin B lung stage 100 2 80 60 1 +EdU+ worms 2 40 20 meg4.1 % 0 012345 days (post-EdU Injection) 10 μm 10 μm 10 μm 7/13 12/12 N = 8 9 10 8 Fig. 1. Stem cells drive early development of the schistosome esophageal gland. (A) Life cycle of Schistosoma mansoni. eg, esophageal gland; vs, ventral sucker. Each worm schematic depicts the esophageal gland (magenta-filled bean shapes), gut branches that stretch posteriorly (magenta outlines), and the ventral sucker (dark gray disk). The intramammalian developmental curve was adapted from ref. 40. (B) Anatomical features of schistosomula. (Top) Sche- matic view of a schistosomulum with the primordial digestive tract outlined. Genes expressed in distinct parts of the digestive tract are indicated. (Bottom) Day 1 posttransformation schistosomulum stained with PNA lectin and phalloidin, maximum-intensity projection (MIP). PNA (cyan) labels cercarial penetration gland used for mammalian skin penetration; this gland is largely unused after mechanical removal of tails. Phalloidin staining (magenta) labels muscular features surrounding the primordial digestive tract. (C) h2b fluorescence in situ hybridization (FISH) in cercaria, MIP. R and L, right and left, each showing pairs of h2b+ stem cells; M, medially located stem cell. vs, ventral sucker, indicated by white circles throughout (C–I). (D) Quantification of h2b+ cells in cercariae and schistosomula at various time points in vitro and in vivo (lung) (SI Appendix, Fig. S1A). Gray lines: Mean ± SD. Statistical analysis: one-way ANOVA. (E) Quantification of EdU+ cells at indicated days posttransformation after continuous EdU labeling in vitro. Mean ± SD. (F, Left) h2b FISH and EdU − labeling at day 3 or 7 posttransformation in vitro, MIP. Arrowheads: double-positive cells; Arrows: h2b+ EdU cells. (Right) Percent of h2b+ EdU+ cells over total − EdU+ cells (black) or h2b+ cells (gray); mean ± SD.
Recommended publications
  • IFM Innate Immunity Infographic
    UNDERSTANDING INNATE IMMUNITY INTRODUCTION The immune system is comprised of two arms that work together to protect the body – the innate and adaptive immune systems. INNATE ADAPTIVE γδ T Cell Dendritic B Cell Cell Macrophage Antibodies Natural Killer Lymphocites Neutrophil T Cell CD4+ CD8+ T Cell T Cell TIME 6 hours 12 hours 1 week INNATE IMMUNITY ADAPTIVE IMMUNITY Innate immunity is the body’s first The adaptive, or acquired, immune line of immunological response system is activated when the innate and reacts quickly to anything that immune system is not able to fully should not be present. address a threat, but responses are slow, taking up to a week to fully respond. Pathogen evades the innate Dendritic immune system T Cell Cell Through antigen Pathogen presentation, the dendritic cell informs T cells of the pathogen, which informs Macrophage B cells B Cell B cells create antibodies against the pathogen Macrophages engulf and destroy Antibodies label invading pathogens pathogens for destruction Scientists estimate innate immunity comprises approximately: The adaptive immune system develops of the immune memory of pathogen exposures, so that 80% system B and T cells can respond quickly to eliminate repeat invaders. IMMUNE SYSTEM AND DISEASE If the immune system consistently under-responds or over-responds, serious diseases can result. CANCER INFLAMMATION Innate system is TOO ACTIVE Innate system NOT ACTIVE ENOUGH Cancers grow and spread when tumor Certain diseases trigger the innate cells evade detection by the immune immune system to unnecessarily system. The innate immune system is respond and cause excessive inflammation. responsible for detecting cancer cells and This type of chronic inflammation is signaling to the adaptive immune system associated with autoimmune and for the destruction of the cancer cells.
    [Show full text]
  • Innate Immunity in the Lung: How Epithelial Cells Fight Against
    Copyright #ERSJournals Ltd 2004 EurRespir J 2004;23: 327– 333 EuropeanRespiratory Journal DOI: 10.1183/09031936.03.00098803 ISSN0903-1936 Printedin UK –allrights reserved REVIEW Innateimmunity in the lung: how epithelialcells ght against respiratorypathogens R. Bals*,P.S. Hiemstra # Innateimmunity in the lung: how epithelial cells ® ghtagainst respiratory pathogens *Deptof Internal Medicine, Division of R Bals, P S Hiemstra #ERS JournalsLtd 2004 PulmonaryMedicine, Hospital of the Uni- versityof Marburg, Philipps-University, ABSTRACT: Thehuman lung is exposed to a largenumber of airborne pathogens as a # resultof the daily inhalation of 10,000 litres of air Theobservation that respiratory Marburg,Germany; Deptof Pulmonology, LeidenUniversity Medical Center, Leiden, infectionsare nevertheless rare is testimony to the presence of anef®cient host defence TheNetherlands systemat the mucosal surface of the lung Theairway epithelium is strategically positioned at the interface with the Correspondence:P S Hiemstra,Dept of environment,and thus plays a keyrole in this host defence system Recognition Pulmonology,Leiden University Medical systemsemployed by airwayepithelial cells to respond to microbialexposure include the Center, P O Box9600, 2300 RC Leiden, The actionof the toll-like receptors Netherlands Theairway epithelium responds to such exposure by increasing its production of Fax:31 715266927 mediatorssuch as cytokines, chemokines and antimicrobial peptides Recent® ndings E-mail: p s hiemstra@lumc nl indicatethe importance of these peptides
    [Show full text]
  • Angiostrongylus Cantonensis: a Review of Its Distribution, Molecular Biology and Clinical Significance As a Human
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303551798 Angiostrongylus cantonensis: A review of its distribution, molecular biology and clinical significance as a human... Article in Parasitology · May 2016 DOI: 10.1017/S0031182016000652 CITATIONS READS 4 360 10 authors, including: Indy Sandaradura Richard Malik Centre for Infectious Diseases and Microbiolo… University of Sydney 10 PUBLICATIONS 27 CITATIONS 522 PUBLICATIONS 6,546 CITATIONS SEE PROFILE SEE PROFILE Derek Spielman Rogan Lee University of Sydney The New South Wales Department of Health 34 PUBLICATIONS 892 CITATIONS 60 PUBLICATIONS 669 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Create new project "The protective rate of the feline immunodeficiency virus vaccine: An Australian field study" View project Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva View project All content following this page was uploaded by Indy Sandaradura on 30 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen JOEL BARRATT1,2*†, DOUGLAS CHAN1,2,3†, INDY SANDARADURA3,4, RICHARD MALIK5, DEREK SPIELMAN6,ROGANLEE7, DEBORAH MARRIOTT3, JOHN HARKNESS3, JOHN ELLIS2 and DAMIEN STARK3 1 i3 Institute, University of Technology Sydney, Ultimo, NSW, Australia 2 School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia 3 Department of Microbiology, SydPath, St.
    [Show full text]
  • Rapid Screening for Schistosoma Mansoni in Western Coã Te D'ivoire Using a Simple School Questionnaire J
    Rapid screening for Schistosoma mansoni in western Coà te d'Ivoire using a simple school questionnaire J. Utzinger,1 E.K. N'Goran,2 Y.A. Ossey,3 M. Booth,4 M. TraoreÂ,5 K.L. Lohourignon,6 A. Allangba,7 L.A. Ahiba,8 M. Tanner,9 &C.Lengeler10 The distribution of schistosomiasis is focal, so if the resources available for control are to be used most effectively, they need to be directed towards the individuals and/or communities at highest risk of morbidity from schistosomiasis. Rapid and inexpensive ways of doing this are needed, such as simple school questionnaires. The present study used such questionnaires in an area of western Coà te d'Ivoire where Schistosoma mansoni is endemic; correctly completed questionnaires were returned from 121 out of 134 schools (90.3%), with 12 227 children interviewed individually. The presence of S. mansoni was verified by microscopic examination in 60 randomly selected schools, where 5047 schoolchildren provided two consecutive stool samples for Kato±Katz thick smears. For all samples it was found that 54.4% of individuals were infected with S. mansoni. Moreover, individuals infected with S. mansoni reported ``bloody diarrhoea'', ``blood in stools'' and ``schistosomiasis'' significantly more often than uninfected children. At the school level, Spearman rank correlation analysis showed that the prevalence of S. mansoni significantly correlated with the prevalence of reported bloody diarrhoea (P = 0.002), reported blood in stools (P = 0.014) and reported schistosomiasis (P = 0.011). Reported bloody diarrhoea and reported blood in stools had the best diagnostic performance (sensitivity: 88.2%, specificity: 57.7%, positive predictive value: 73.2%, negative predictive value: 78.9%).
    [Show full text]
  • Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths
    CHAPTER 1 Coinfection of Schistosoma (Trematoda) with Bacteria, Protozoa and Helminths ,† ‡ Amy Abruzzi* and Bernard Fried Contents 1.1. Introduction 3 1.2. Coinfection of Species of Schistosoma and Plasmodium 4 1.2.1. Animal studies 21 1.2.2. Human studies 23 1.3. Coinfection of Schistosoma Species with Protozoans other than in the Genus Plasmodium 24 1.3.1. Leishmania 32 1.3.2. Toxoplasma 32 1.3.3. Entamoeba 34 1.3.4. Trypanosoma 35 1.4. Coinfection of Schistosoma Species with Salmonella 36 1.4.1. Animal studies 36 1.4.2. Human studies 42 1.5. Coinfection of Schistosoma Species with Bacteria other than Salmonella 43 1.5.1. Mycobacterium 43 1.5.2. Helicobacter pylori 49 1.5.3. Staphylococcus aureus 50 1.6. Coinfection of Schistosoma and Fasciola Species 50 1.6.1. Animal studies 57 1.6.2. Human studies 58 * Skillman Library, Lafayette College, Easton, Pennsylvania, USA { Epidemiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, New Jersey, USA { Department of Biology, Lafayette College, Easton, Pennsylvania, USA Advances in Parasitology, Volume 77 # 2011 Elsevier Ltd. ISSN 0065-308X, DOI: 10.1016/B978-0-12-391429-3.00005-8 All rights reserved. 1 2 Amy Abruzzi and Bernard Fried 1.7. Coinfection of Schistosoma Species and Helminths other than the Genus Fasciola 59 1.7.1. Echinostoma 59 1.7.2. Hookworm 70 1.7.3. Trichuris 70 1.7.4. Ascaris 71 1.7.5. Strongyloides and Trichostrongyloides 72 1.7.6. Filarids 73 1.8. Concluding Remarks 74 References 75 Abstract This review examines coinfection of selected species of Schisto- soma with bacteria, protozoa and helminths and focuses on the effects of the coinfection on the hosts.
    [Show full text]
  • Taenia Solium Transmission in a Rural Community in ·Honduras: an Examination of Risk Factors and Knowledge
    Taenia solium Transmission in a Rural Community in ·Honduras: An Examination of Risk Factors and Knowledge by Haiyan Pang Faculty of Applied Health Sciences Brock University A thesis submitted for completion of the Master of Science Degree Haiyan Pang © 2004 lAMES A GIBSON LIBRARY . BROCK UNIVERSITY sr. CAtHARINES· ON Abstract Taenia soliurn taeniasis and cysticercosis are recognized as a major public health problem in Latin America. T. soliurn transmission not only affects the health of the individual, but also social and economic development, perpetuating the cycle of poverty. To determine prevalence rates, population knowledge and risk factors associated with transmission, anepidemiological study was undertaken in the rural community of Jalaca. Two standardized questionnaires were used to collect epidemiological and T. soli urn general knowledge data. Kato-Katz technique and an immunoblot assay (EITB) were used to determine taeniasis and seroprevalence, respectively. In total, 139 individuals belonging to 56 households participated in the study. Household characteristics were consistent with conditions of poverty of rural Honduras: 21.4% had no toilet or latrines, 19.6% had earthen floor, and 51.8% lacked indoor tap water. Pigs were raised in 46.4% of households, of which 70% allowed their pigs roaming freely. A human seroprevalence rate of 18.7% and a taeniasis prevalence rate of 2.4% were found. Only four persons answered correctly 2: 6 out of ten T. soliurn knowledge questions, for an average passing score of 2.9%. In general, a serious gap exists in knowledge regarding how humans acquire the infections, especially neurocysticercosis was identified. After regression analysis, the ability to recognize adult tapeworms and awareness of the clinical importance of taeniasis, were found to be significant risk factors for T.
    [Show full text]
  • Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
    Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933.
    [Show full text]
  • Qnas with Max D. Cooper and Jacques F. A. P. Miller
    QNAS QnAswithMaxD.CooperandJacquesF.A.P.Miller QNAS Brian Doctrow, Science Writer Anyone who has ever contracted chicken pox can thank the adaptive immune system for future pro- tection against the disease. It is also thanks to this system that vaccines prevent diseases. The adaptive immune system provides organisms with a memory of past infections, enabling the body to quickly kill returning infections before they can do significant damage. Immunologists Jacques F. A. P. Miller and Max D. Cooper determined that adaptive immunity requires 2 distinct cell types that perform comple- mentary functions. Miller’s findings, published in the early 1960s in Lancet (1) and Proceedings of the Royal Society (2), showed that the ability to distinguish one’s own cells from foreign cells, a key feature of the adap- tive immune system, depends on lymphocytes, now known as T cells, matured in an organ called the thy- mus. Subsequently, Cooper reported in Nature (3) that Max Dale Cooper. Image courtesy of Georgia Research antibody production depends on a separate set of Alliance/Billy Howard. lymphocytes, dubbed B cells. The division of labor between T and B cells is a fundamental organizing principle of the adaptive immune system, the discov- did cancer research. I started working on leukemia and ery of which laid the groundwork for modern immu- this gave me an interest in lymphocytes. nology and made possible many subsequent medical advances, including monoclonal antibody produc- Cooper: I became interested through patients that I tion, vaccine development, and checkpoint inhibi- was taking care of: Children that had deficient immune tion therapies for cancer.
    [Show full text]
  • Cyclosporiasis and Fresh Produce
    FDA FACT SHEET Produce Safety Rule (21 CFR 112) Cyclosporiasis and Fresh Produce Fast Facts for Farmers: • Cyclosporiasis is an intestinal illness caused by the parasite Cyclospora cayetanensis (C. cayetanensis), which only occurs in humans, and the most common symptom is diarrhea. • Infected people shed the parasite in their feces. • When the parasite is found in water or food, it means that the water or food has been contaminated with human feces. • Other people may become sick by ingesting water or food contaminated with the parasite. • Good hygiene (including proper handwashing) is a critical component of ensuring the safety of fresh produce, but by itself it may not be enough to prevent infected employees from contaminating fresh produce. • The FSMA Produce Safety Rule requires that personnel on farms use hygienic practices (§ 112.32) and that ill employees are excluded from handling fresh produce and food contact surfaces (§ 112.31). What is Cyclospora cayetanensis? C. cayetanensis is a human parasite, which means it must live inside a human host to survive and multiply. The parasite can cause an infection, called cyclosporiasis. A person may become infected after ingesting food or water contaminated with the parasite. Infected people, even if showing no symptoms of infection, may shed the parasite in their feces, which can contaminate food and water, leading to the infection of other people. Cyclosporiasis outbreaks have been associated with the consumption of fresh fruits and vegetables around the world, including in the U.S. What are the symptoms of cyclosporiasis? Most people infected with C. cayetanensis develop diarrhea, with frequent, sometimes explosive, bowel movements.
    [Show full text]
  • Abundance of Tegument Surface Proteins in the Human Blood Fluke Schistosoma Mansoni Determined by Qconcat Proteomics
    JPROT-00583; No of Pages 15 JOURNAL OF PROTEOMICS XX (2011) XXX– XXX available at www.sciencedirect.com www.elsevier.com/locate/jprot Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics William Castro-Borgesa,⁎, Deborah M. Simpsonb, Adam Dowlea, c, Rachel S. Curwena, Jane Thomas-Oatesc, d, Robert J. Beynonb, R. Alan Wilsona aCentre for Immunology & Infection, Department of Biology, University of York, Heslington, York, YO10 5DD, UK bProtein Function Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK cCentre of Excellence in Mass Spectrometry, University of York, Heslington, York, YO10 5DD, UK dDepartment of Chemistry, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Article history: The schistosome tegument provides a major interface with the host blood stream in which Received 12 April 2011 it resides. Our recent proteomic studies have identified a range of proteins present in the Accepted 12 June 2011 complex tegument structure, and two models of protective immunity have implicated surface proteins as mediating antigens. We have used the QconCAT technique to evaluate Keywords: the relative and absolute amounts of tegument proteins identified previously. A concatamer 13 QconCAT comprising R- or K-terminated peptides was generated with [ C6] lysine/arginine amino Schistosoma mansoni acids. Two tegument surface preparations were each spiked with the purified SmQconCAT Quantitative proteomics as a standard, trypsin digested, and subjected to MALDI ToF-MS. The absolute amounts of protein in the biological samples were determined by comparing the areas under the pairs of peaks, separated by 6 m/z units, representing the light and heavy peptides derived from the biological sample and SmQconCAT, respectively.
    [Show full text]
  • The Roles of Human Cytomegalovirus Tegument Proteins Pul48 and Pul103 During Lytic Infection Daniel Angel Ortiz Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2016 The Roles Of Human Cytomegalovirus Tegument Proteins Pul48 And Pul103 During Lytic Infection Daniel Angel Ortiz Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Cell Biology Commons, and the Virology Commons Recommended Citation Ortiz, Daniel Angel, "The Roles Of Human Cytomegalovirus Tegument Proteins Pul48 And Pul103 During Lytic Infection" (2016). Wayne State University Dissertations. Paper 1405. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. THE ROLES OF HUMAN CYTOMEGALOVIRUS TEGUMENT PROTEINS pUL48 AND pUL103 DURING LYTIC INFECTION by DANIEL ANGEL ORTIZ DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2015 MAJOR: IMMUNOLOGY & MICROBIOLOGY Approved by: Advisor Date ____________________________________ ____________________________________ ____________________________________ DEDICATION This work is dedicated to my family and friends that have supported me throughout my journey as a graduate student. Moving to a Michigan was an adventure all in itself, as I have never lived outside of Illinois. Having my uncle Tony and aunt Bobbie close by made the transition much easier. I always knew I had a place to eat, relax, and vent. Their generosity and hospitality have redefined my definition of “family” which will always resonate with me. I also want to thank my parents, Javier and Esperanza Ortiz, who have been there for me throughout this whole process.
    [Show full text]
  • The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma
    biology Review The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma Megan R. Gillespie 1, Vikrant Rai 2 , Swati Agrawal 3 and Kalyana C. Nandipati 3,* 1 School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; [email protected] 2 Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; [email protected] 3 Department of Surgery, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-402-280-5292 Simple Summary: Esophageal adenocarcinoma has a poor 5-year survival rate and is among the highest mortality cancers. Changes in the esophageal microbiome have been associated with cancer pathogenesis; however, the molecular mechanism remains obscure. This review article critically analyzes the molecular mechanisms through which microbiota may mediate the development and progression of esophageal adenocarcinoma and its precursors-gastroesophageal reflux disease and Barrett’s esophagus. It summarizes changes in esophageal microbiome composition in normal and pathologic states and subsequently discusses the role of altered microbiota in disease progression. The potential role of esophageal microbiota in protecting against the development of esophageal adenocarcinoma is also discussed. By doing so, this article highlights specific directions for future research developing microbiome-mediated therapeutics for esophageal adenocarcinoma. Abstract: Esophageal adenocarcinoma (EAC) is associated with poor overall five-year survival. The Citation: Gillespie, M.R.; Rai, V.; incidence of esophageal cancer is on the rise, especially in Western societies, and the pathophysiologic Agrawal, S.; Nandipati, K.C. The Role of Microbiota in the Pathogenesis of mechanisms by which EAC develops are of extreme interest.
    [Show full text]