Cold Air Incursions Over Subtropical and Tropical South America: a Numerical Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Cold Air Incursions Over Subtropical and Tropical South America: a Numerical Case Study DECEMBER 1999 GARREAUD 2823 Cold Air Incursions over Subtropical and Tropical South America: A Numerical Case Study RENE D. GARREAUD Department of Atmospheric Sciences, University of Washington, Seattle, Washington (Manuscript received 6 June 1998, in ®nal form 24 November 1998) ABSTRACT Synoptic-scale incursions of cold, midlatitude air that penetrate deep into the Tropics are frequently observed to the east of the Andes cordillera. These incursions are a distinctive year-round feature of the synoptic climatology of this part of South America and exhibit similar characteristics to cold surges observed in the lee of the Rocky Mountains and the Himalayan Plateau. While their large-scale structure has received some attention, details of their mesoscale structural evolution and underlying dynamics are largely unknown. This paper advances our understanding in these matters on the basis of a mesoscale numerical simulation and analysis of the available data during a typical case that occurred in May of 1993. The large-scale environment in which the cold air incursion occurred was characterized by a developing midlatitude wave in the middle and upper troposphere, with a ridge immediately to the west of the Andes and a downstream trough over eastern South America. At the surface, a migratory cold anticyclone over the southern plains of the continent and a deepening cyclone centered over the southwestern Atlantic grew mainly due to upper-level vorticity advection. The surface anticyclone was also supported by midtropospheric subsidence on the poleward side of a jet entrance±con¯uent ¯ow region over subtropical South America. The northern edge of the anticyclone followed an anticyclonic path along the lee side of the Andes, reaching tropical latitudes 2± 3 days after its onset over southern Argentina. The concomitant cold air produced low-level (surface to ;800 hPa) cooling on the order of 108C over the subtropical part of the continent (as far north as 108S). Based on the observations and model results, a three-stage evolution of the cold air incursion is suggested. The initial cooling to the south of 308S and far from the Andes is mainly produced by the geostrophic southerly winds between the continental anticylone and the developing low off the coast of Argentina. As the surface pressure increases over southern Argentina, a large-scale meridional pressure gradient is established between the migratory anticyclone and the continental trough farther to the north. The blocking effect of the Andes leads to an ageostrophic, low-level southerly ¯ow that advects cold air into the subtropics. Finally, as the cold air moves to the north of 188S, the blocking effect of the Andes weakens (because the adjustment back to geostrophy is quite slow at these low latitudes) and the cold air spread out over the Tropics. In the last two stages of the incursion the strong pressure (temperature) gradient drives the northward accelaration of the low-level winds, while horizontal advection of cold air by southerly winds maintains the strong temperature gradient against the dissipative effects of the strong surface heat ¯uxes. 1. Introduction in¯uence on the weather over the western side of the Synoptic-scale incursions of cold air that penetrate great plains of North America (e.g., Tilley 1990; Blue- deep into the Tropics are frequently observed to the east stein 1993; Colle and Mass 1995) and their subsequent of major north±south-oriented mountain ranges, pro- impact on Central America and the Caribbean [see ducing dramatic weather changes over a wide range of Schultz et al. (1997, 1998) for an extensive review of latitudes. Particular emphasis has been placed on cold the literature on Central American cold surges]. Surges surges bounded by the Himalayan Plateau over south- of cold air of somewhat smaller scale have also been east Asia and their in¯uence on the Tropics during the documented along the east side of the Appalachians winter monsoon (e.g., Ramage 1971; Lau and Chang (e.g., Bell and Bosart 1988) and along the east coast of 1987; Boyle and Chen 1987; Wu and Chan 1995, 1997). Australia (e.g., Baines 1980; McBride and McInnes Cold surges along the east side of the Rocky Mountains 1993). have also attracted considerable interest due to their In South America, episodic incursions of midlatitude air to the east of the subtropical Andes (also referred to as South American cold surges) are a distinctive year- round feature of the synoptic climatology, whose ex- Corresponding author address: Dr. Rene D. Garreaud, Departa- mento de Geo®sica, Universidad de Chile, Casilla 2777, Santiago, istence and relevance has been recognized by synopti- Chile. cians for a long time. Statistical analyses by Kousky q 1999 American Meteorological Society 2824 MONTHLY WEATHER REVIEW VOLUME 127 FIG. 1. Topography of South America. Elevation scale in meters above sea level. The outer and inner boxes indicate the outer and inner domain used in the numerical simulation. and Cavalcanti (1997), Compagnucci and Salles (1997), or so of moderate low-level southerly winds (;10 m Garreaud and Wallace (1998), Vera and Vigliarolo s21) characterize the passage of cold surges over sub- (2000), and Garreaud (1998) also demonstrate that tropical South America during wintertime. Extreme ep- South American cold surges dominate the synoptic var- isodes produce widespread freezing from central Ar- iability of the low-level circulation, air temperature, and gentina to southern Brazil, which has motivated some rainfall over much of the continent to the east of the case studies (Hamilton and Tarifa 1978; Fortune and Andes. The prevalence of this phenomenon seems at Kousky 1983; Marengo et al. 1997; Bosart et al. 1998). least partially related to the favorable continental-scale Summertime episodes produce less dramatic ¯uctua- topography: the Andes cordillera extends continuously tions in temperature and pressure, owing to the smaller from the southern tip of the continent (;508S) to the seasonal temperature gradient between mid- and low north of the equator with an almost straight north±south latitudes, but they are accompanied by a band of en- orientation, elevations in excess of 3000 m along most hanced convection and rainfall at the leading edge of of its extension, and a steep eastern slope (;300 km the cool air (Ratisbona 1976; Parmenter 1976; Kousky wide). Along its central portion (158±228S) the Andes 1979; Kousky and Ferreira 1981; Garreaud and Wallace holds a high-level plateau known as the Altiplano, about 1998). These synoptic-scale bands of organized deep 300 km wide and at a mean elevation of 3800 m (;620 convection account for nearly half of the summertime hPa). To the east of the Andes, the terrain is low and rainfall over the subtropical plains of the continent and ¯at, at an average elevation of 500 m, with the exception produce some of the heaviest rainfall episodes during of the Brazilian highland near the eastern tip of the summer (Garreaud and Wallace 1998). continent (see Fig. 1 for a topographic map of South The above cited case studies and statistical analyses America and Fig. 16 for a west±east cross section along provide a comprehensive picture of the mean, synoptic- 208S). scale structure of South American cold surges. The up- Moderate surface pressure rises (;10 hPa day21), per-level circulation is typically characterized by a de- low-level air temperature drops (;58C day21) and a day veloping midlatitude wave, with a ridge immediately to DECEMBER 1999 GARREAUD 2825 the west of the Andes and a downstream trough over 208S) and tropical (208±108S) South America to the east eastern South America, which provides the large-scale of the Andes that took place in the autumn of 1993 forcing of the system predominantly in the form of vor- between 11 and 16 May. The analysis is based on con- ticity advection (Marengo et al. 1997; Garreaud and ventional synoptic data (surface and radiosonde station Wallace 1998; Garreaud 1998). At lower levels, the reports stored by NCAR), and the National Centers for equatorward incursion of cold air is initiated by the Environmental Prediction (NCEP)±NCAR gridded (2.58 movement of a migratory cold anticyclone from the lat 3 2.58 long) reanalyzed ®elds (Kalnay et al. 1996). southeastern Paci®c onto the southern plains of the con- Because the 6-hourly reanalyses were produced using tinent (to the east of the Andes between 408 and 308S) a state-of-the-art weather prediction model and data as- and the deepening of a low-pressure center over the similation system, and an enhanced observational da- Atlantic off the coast of southern Argentina. Along 358S tabase (including conventional, aircraft, and satellite the anticyclone moves slowly to the east, while its north- data), they are considered to compose one of the most ern leading edge becomes increasingly detached from complete and physically consistent datasets of the at- the eastward drifting upper-level ¯ow and moves north- mospheric circulation (Kalnay et al. 1996). Furthermore, ward to reach the subtropical and tropical (208±108S) the most important features of South American cold part of the continent within 2±3 days, collocated with surges take place over a continental area to the north a sharp transition in low-level meridional wind and a of 408S, where the assimilation of conventional data low-level baroclinic zone. should strongly damp any errors that may propagate in The mesoscale structural evolution and dynamics of from the data-void southern Paci®c. We were unable to this phenomenon, however, are largely unknown. Two gather enough precipitation data, but GOES-7 infrared important issues need to be examined. First, is the north- images (from a Geostationary Operational Environ- ward advance of cold air produced by orographically trapped waves (such as Kelvin waves or shelf waves) mental Satellite) were used as a proxy for convective or, alternatively, is horizontal advection the dominant cloudiness.
Recommended publications
  • 11Th Australian Space Forum Wednesday 31 March 2021 Adelaide, South Australia
    11th Australian Space Forum Wednesday 31 March 2021 Adelaide, South Australia 11th Australian Space Forum a 11th Australian Space Forum Wednesday 31 March 2021 Adelaide, South Australia Major Sponsor Supported by b 11th Australian Space Forum c Contents Welcome from the Chair of The Andy Thomas Space Foundation The Andy Thomas Space Foundation is delighted to welcome you to the 11th Australian Space Forum. Contents 11th Australian Space Forum The Foundation will be working with partners Wednesday 31 March 2021 1 Welcome and sponsors, including the Australian Space Adelaide, South Australia — Chair of The Andy Thomas Agency, on an ambitious agenda of projects Space Foundation to advance space education and outreach. Adelaide Convention Centre, — Premier of South Australia We are reaching out to friends and supporters North Terrace, Adelaide, South Australia — Head of the Australian who have a shared belief in the power of Forum sessions: Hall C Space Agency education, the pursuit of excellence and a Exhibition: Hall H commitment to diversity and inclusion. We 6 Message from the CEO The Foundation was established in 2020 for look forward to conversations during the 8 Forum Schedule the purpose of advancing space education, Forum – as well as ongoing interaction - about raising space awareness and contributing our shared interests and topics of importance 11 Speaker Profiles to the national space community. We to the national space community. are delighted that the South Australian 28 Company Profiles We hope you enjoy the 11th Australian Government has entrusted us with the future Space Forum. 75 Foundation Corporate Sponsors conduct of the Australian Space Forum – and Professional Partners Australia’s most significant space industry Michael Davis AO meeting – and we intend to ensure that the Chair, Andy Thomas Space Foundation 76 Venue Map Forum continues to be the leading national 77 Exhibition Floorplan platform for the highest quality information and discussion about space industry topics.
    [Show full text]
  • Analysis of a Southerly Buster Event and Associated Solitary Waves
    CSIRO PUBLISHING Journal of Southern Hemisphere Earth Systems Science, 2019, 69, 205–215 https://doi.org/10.1071/ES19015 Analysis of a southerly buster event and associated solitary waves Shuang WangA,B,D, Lance LeslieA, Tapan RaiA, Milton SpeerA and Yuriy KuleshovC AUniversity of Technology Sydney, Sydney, NSW, Australia. BBureau of Meteorology, PO Box 413, Darlinghurst, NSW 1300, Australia. CBureau of Meteorology, Melbourne, Vic., Australia. DCorresponding author. Email: [email protected] Abstract. This paper is a detailed case study of the southerly buster of 6–7 October 2015, along the New South Wales coast. It takes advantage of recently available Himawari-8 high temporal- and spatial-resolution satellite data, and other observational data. The data analyses support the widespread view that the southerly buster is a density current, coastally trapped by the Great Dividing Range. In addition, it appeared that solitary waves developed in this event because the prefrontal boundary layer was shallow and stable. A simplified density current model produced speeds matching well with observational southerly buster data, at both Nowra and Sydney airports. Extending the density current theory, to include inertia-gravity effects, suggested that the solitary waves travel at a speed of ,20% faster than the density current. This speed difference was consistent with the high-resolution satellite data, which shows the solitary waves moving increasingly ahead of the leading edge of the density current. Additional keywords: coastally trapped disturbance, density currents. Received 19 May 2019, accepted 7 October 2019, published online 11 June 2020 1 Introduction speed of ,20 m/s at the leading edge of the ridge (Holland and Southerly busters (SBs) occur during the spring and summer Leslie 1986).
    [Show full text]
  • The Bubbly Professor Tackles Topography
    The Bubbly Professor Tackles Topography France Land: Western Alps, Massif Central, Vosges Mountains, Pyrenees, Auvergne Mountains, Jura Mountains, Morvan Massif, Mont Blanc Water: Rhône River, Moselle River, Rhine River, Loire River, Cher River, Charente River, Garonne River, Dordogne River, Gironde River (Estuary), Seine River, Marne River, Hérault River, Saône River, Aube River, Atlantic Ocean, Bay of Biscay, Mediterranean Sea, English Channel Wind: Gulf Stream, Mistral, Tramontane Italy Land: Italian Alps, Apennines, Dolomites, Mount Etna, Mount Vesuvius, Mont Blanc Water: Arno River, Po River, Tiber River, Tanaro River, Adige River, Piave River, Tagliamento River, Sesia River, Lake Garda, Lake Como, Mediterranean Sea, Gulf of Venice Wind: Sirocco winds, Grecale Winds Spain: Land: Pyrenees, Meseta Central, Picos de Europa, Sierra Nevada, Cantabrian Mountains, Sistema Ibérico, Montes de Toledo, Sierra de Gredos, Sierra de Guadaramma, Sistema Penibértico, Canary Islands, Balearic Islands Water: Ebro River, Duero River, Tagus River, Guadiana River, Guadalquivir River, Rías Baixas, Rías Altas, Atlantic Ocean, Bay of Biscay, Gulf of Cadiz, Mediterranean Sea Wind: Garbinada Winds, Cierzo Winds, Levante, Poniente Portugal Land: Serra da Estrela, Montes de Toledo, Sintra Mountain, Azores, Madeira Island Water: Minho River, Douro River, Tagus (Tejo) River, Guadiana River, Sado River, Mondego River, Ave River, Gulf of Cadiz, Atlantic Ocean Winds: Portugal Current Austria Land: Central Alps, Pannonian Basin, Bohemian Forest Water: Danube River,
    [Show full text]
  • Temporal and Spatial Study of Thunderstorm Rainfall in the Greater Sydney Region Ali Akbar Rasuly University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1996 Temporal and spatial study of thunderstorm rainfall in the Greater Sydney region Ali Akbar Rasuly University of Wollongong Recommended Citation Rasuly, Ali Akbar, Temporal and spatial study of thunderstorm rainfall in the Greater Sydney region, Doctor of Philosophy thesis, School of Geosciences, University of Wollongong, 1996. http://ro.uow.edu.au/theses/1986 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] TEMPORAL AND SPATIAL STUDY OF THUNDERSTORM RAINFALL IN THE GREATER SYDNEY REGION A thesis submitted in fulfilment of the requirements for the award of the degree UNIVERSITY O* DOCTOR OF PHILOSOPHY from UNIVERSITY OF WOLLONGONG by ALIAKBAR RASULY B.Sc. & M.Sc. (IRAN, TABRIZ University) SCHOOL OF GEOSCIENCES 1996 CERTIFICATION The work presented herein has not been submitted to any other university or institution for a higher degree and, unless acknowledged, is my own original work. A. A. Rasuly February 1996 i ABSTRACT Thunderstorm rainfall is considered as a very vital climatic factor because of its significant effects and often disastrous consequences upon people and the natural environment in the Greater Sydney Region. Thus, this study investigates the following aspects of thunderstorm rainfall climatology of the region between 1960 to 1993. In detail, it was found that thunderstorm rainfalls in Sydney have marked diurnal and seasonal variations. They are most frequent in the spring and summer and during the late afternoon and early evening. Thunderstorms occur primarily over the coastal areas and mountains, and less frequently over the lowland interior of the Sydney basin.
    [Show full text]
  • Flying the Southeast
    WEATHER ADVICE FOR YOUR SAFETY Flying the Southeast Bureau of Meteorology › Weather Services › Aviation Weatherwise pilots keep in touch with the current and expected weather patterns by: • obtaining the latest aviation observations, forecasts, warnings and charts from the briefing system listed at the end of this pamphlet, • telephoning the Bureau of Meteorology for elaborative briefing, when appropriate, and • paying attention to media weather presentations and reports. Pilots also benefit from understanding the characteristics of particular weather situations and systems which affect the area in which they operate. This pamphlet discusses some of the hazardous weather elements and situations that may be experienced in southeastern Australia from an aviation perspective. This pamphlet provides an overview 1016 of the weather over 1008 1016 1008 1012 L 1012 L AN PATH OF southeastern Australia ME WINTE 1020 R HIG 1016 L HS 1020 (defined as south of 1016 1020 H H 1024 latitude 23.5˚S and east 1024 M EAN P ATH 1020 OF S HS of longitude 135˚E), UMMER HIG 1008 1016 1012 1020 H 1012 particularly as it affects 1024 1004 1008 1016 1008 1004 aviation. 1000 1012 L 1004 Average MSLP in summer (left) and winter (right). General Climate Southeastern Australia can broadly be described as having a temperate climate characterised by a marked seasonal variation in weather. Summer In summer, high pressure systems typically travel west to east across the region at the latitude of Victoria or Tasmania before moving northeast into the Tasman Sea. These high pressure systems are generally associated with benign conditions, however weather hazards may still be encountered in the transition between one high progressing eastwards and another high moving in to replace it.
    [Show full text]
  • JSHESS Early Online View
    DOI: 10.22499/3.6901.015 JSHESS early online view This article has been accepted for publication in the Journal of Southern Hemisphere Earth Systems Science and undergone full peer review. It has not been through the copy-editing, typesetting and pagination, which may lead to differences between this version and the final version. Corresponding author: Shuan g Wang, Bureau of Meteorology, Sydney Email: [email protected] 1 2 Analysis of a Southerly Buster Event and 3 Associated Solitary Waves 4 5 Shuang Wang1, 2, Lance Leslie1, Tapan Rai1, Milton Speer1 and Yuriy 6 Kuleshov3 7 1 University of Technology Sydney, Sydney, Australia 8 2 Bureau of Meteorology, Sydney, Australia 9 3 Bureau of Meteorology, Melbourne, Australia 10 11 (Manuscript submitted March 19, 2019) 12 Revised version submitted July 23, 2019 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Corresponding author: Shuan g Wang, Bureau of Meteorology, Sydney Email: [email protected] 29 30 ABSTRACT 31 This paper is a detailed case study of the southerly buster of October 6-7, 2015, along the New 32 South Wales coast. It takes advantage of recently available Himawari-8 high temporal- and spatial- 33 resolution satellite data, and other observational data. The data analyses support the widespread 34 view that the southerly buster is a density current, coastally trapped by the Great Dividing Range. 35 In addition, it appears that solitary waves develop in this event because the prefrontal boundary 36 layer is shallow and stable. A simplified density current model produced speeds matching well 37 with observational southerly buster data, at both Nowra and Sydney airports.
    [Show full text]
  • References to the Weather of NSW in the Published Meteorological Literature
    References to the weather of NSW in the published meteorological literature The following is a list of references in the published meteorological literature to both the general weather and specific weather events in New South Wales. The listing is comprehensive but cannot be considered exhaustive. Bushfire Adams, M., 1981. Meteorological aspects of the February 1979 Southern Tablelands bushfires. Meteorological Note 126, Bureau of Meteorology, Australia, 36p. Cheney, N.P. 1976. Bushfire disasters in Australia, 1945-1975. Aust. For. 39, 245-68 Colquhoun, J.R., Sullivan, P.J., Buckley, B. and Mitchell, E.1999. The NSW fires of January 1994. Bureau of Meteorology, Australia. Colquhuon, J.R. 1981. Meteorological aspects of the December 1977 Blue Mountains bushfires. Meteorological Note 96, Bureau of Meteorology, Australia. Dawkins, S., Trewin, B., Braganza, K., Collins D., Jones, D. 2006. Observed climate change during the Australian fire seasons. 13th National Australian Meteorological and Oceanographic Society Conference: Climate, water and sustainability: abstract volume: 6-8 February 2006, Newcastle, New South Wales, Australia, Australian Meteorological and Oceanographic Society p.21. Foley, J.C. 1945. A study of meteorological conditions associated with bush and grass fires and fire protection strategy in Australia. Bulletin No. 38, Bureau of Meteorology, Australia, 234p. Robin, A.G., Wilson, G.U. 1958. The effect of meteorological conditions on major fires in the Riverina (New South Wales) district. Aust. Met. Mag., 21, 49-75 Speer, M, Leslie, L., Colquhoun, J. and Mitchell, E.1996. The Sydney Australia Wildfires of January 1994 - Meteorological Conditions and High Resolution Numerical Modeling Experiments. Int. J. Wildland Fire, 6, 1996 Speer, M.
    [Show full text]
  • Southerly Buster Events in New Zealand
    Weather and Climate (1990) 10: 35-54 35 SOUTHERLY BUSTER EVENTS IN NEW ZEALAND R. N. Ridley' New Zealand Meteorological Service, Wellington, New Zealand ABSTRACT The 'southerly buster' is a particularly intense form of southerly change which occurs along the New South Wales coast of Australia. In this study similar changes occurring in late summer in eastern New Zealand are identified and described, with emphasis on their synoptic environment. Typical features found include a sharp or sharpening trough approaching in a strong westerly flow, much warmer than usual air over New Zealand preceding the change, a shallow southerly flow following the change, and a complex meso-scale signature at the surface. The synoptic scale flow is found to have a significant influence on the formation and nature of the changes. On the meso- scale, the New Zealand southerly buster appears to have unsteady gravity current-like features similar to its Australian counterpart. A typical scenario for the occurrence of a southerly buster along the east coast of New Zealand is given. INTRODUCTION tries as marine, aviation, construction, forest- The Southern Alps are a major barrier to ry (including fire-fighting) and power supply. the prevailing westerly flow, occupying up to They pose a difficult forecasting problem due a third of the depth of the troposphere, and the to their occurrence on time and space scales structure of any front is expected, therefore, that are not well resolved by current numeri- to be greatly modified by flow over or around cal prediction models, and a lack of under- the mountains. Indeed, it is well known by standing of their dynamics.
    [Show full text]
  • Brickfielders and Bursters
    grandfather’s rain-making ritual faithfully Lambert, J (ed), 1996. Macquarie book of recounted by an old bushman in the slang: Australian slang in the 1990s, “Aboriginalities” section of the Bulletin (Huie, Macquarie Library, Macquarie University, 2011). NSW, 276pp. By the early twentieth century, Australians Ludowyx, William, 1999. Send Her Down spoke of Hughie as if he were a knockabout Who-ie? Ozwords, available from god – an equal, a mate. But that’s not how he www.anu.edu.au/andc/pubs/ozwords/ began. In the 1880s, the thirsty stockmen of October_99/index.html. Narrandera were not appealing for divine Murray, F, 2011. Thomas O’Shaughnessey’s intervention when they appealed to Hughie. diary, entry for 1848 – The Early Pioneers and They were recalling a local man’s audacity. their lives. Available from They were saluting John Ziegler Huie and his www.frankmurray.com.au/?page_id=420. meteorological cannon. Reilly, P.J., 1853. Notes to James Allen in References Journal of an experimental trip by the “Lady Huie, J., 2011. Huie Family Tree. Available Augusta” on the River Murray. Australiana from think.io/pub/Mirror/www.futureweb.com. facsimile editions 202, Ferguson no. 5897, au/johnhuie/tree.htm. 81–2. Brickfielders and Bursters Neville Nicholls School of Geography & Environmental Science, Monash University, Melbourne Address for correspondence: [email protected] The Australian Meteorological & So, when did “brickfielder” start to be used to Oceanographic Society (AMOS) has been denote a hot, northerly wind? And why? running a competition to name Melbourne’s Where was it used in this way? And what hot northerly wind, and the winners have just happened to the term? been announced (see News in this issue).
    [Show full text]
  • Writing the Illawarra
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2001 Once upon a place: writing the Illawarra Peter Knox University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Knox, Peter, Once upon a place: writing the Illawarra, Master of Arts (Hons.) thesis, Faculty of Arts, University of Wollongong, 2001. https://ro.uow.edu.au/theses/2242 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Atmospheric Density Currents: Impacts on Aviation Over Nsw and Act
    ATMOSPHERIC DENSITY CURRENTS: IMPACTS ON AVIATION OVER NSW AND ACT [Shuang Wang] [Master of Science and Master of Engineering] [Supervisors: Tapan Rai, Lance Leslie, Yuriy Kuleshov] Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Mathematical and Physical Science University of Technology Sydney [2019] Atmospheric Density Currents: Impacts on Aviation over NSW and ACT i Statement of Original Authorship Production Note: Signature removed prior to publication. ii Atmospheric Density Currents: Impacts on Aviation over NSW and ACT Keywords ACT, Aviation, Canberra, climate, cooler, damaging winds, density current, down burst, microburst, NSW, observations, permutation testing, ranges, Rossby waves, satellite images, sort-lived gusty winds, southerly busters, squall lines, Sydney, thunderstorms, turbulence, warnings, wavelet analysis, wind shear (in alphabetical order) Atmospheric Density Currents: Impacts on Aviation over NSW and ACT iii Abstract Three main types of density currents (DCs) which have significant impacts for aviation are investigated in detail over New South Wales (NSW) state of Australia and Australian capital Territory (ACT) in the research. The three types of density currents are southerly busters (SBs) along the coastal NSW, thunderstorm downbursts over north-western NSW and easterly DCs over Canberra. The research take advantage of the recently available Himawari-8 high temporal- and spatial- resolution satellite data, Sydney wind profiler data, Doppler radar data, radiosonde data, half hourly METAR and SPECI aviation from observation data Bureau of Meteorology Climate zone, synoptic weather charts and other observational data. In addition, simply model for density currents, global data assimilation system (GDAS) meteorological model outputs, and the Australian Community Climate and Earth-System Simulator (ACCESS) operational model products are employed in the research.
    [Show full text]
  • Marine Meteorology
    PUBLICATIONS VISION DIGITAL ONLINE MAR046 MARITIME STUDIES Supplementary Notes MARINE METEOROLOGY Fifth Edition www.westone.wa.gov.au MARINE METEOROLOGY Supplementary Notes Fifth Edition Larry Lawrence This edition updated by Kenn Batt Copyright and Terms of Use © Department of Training and Workforce Development 2016 (unless indicated otherwise, for example ‘Excluded Material’). The copyright material published in this product is subject to the Copyright Act 1968 (Cth), and is owned by the Department of Training and Workforce Development or, where indicated, by a party other than the Department of Training and Workforce Development. The Department of Training and Workforce Development supports and encourages use of its material for all legitimate purposes. Copyright material available on this website is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) license unless indicated otherwise (Excluded Material). Except in relation to Excluded Material this license allows you to: Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material for any purpose, even commercially provided you attribute the Department of Training and Workforce Development as the source of the copyright material. The Department of Training and Workforce Development requests attribution as: © Department of Training and Workforce Development (year of publication). Excluded Material not available under a Creative Commons license: 1. The Department of Training and Workforce Development logo, other logos and trademark protected material; and 2. Material owned by third parties that has been reproduced with permission. Permission will need to be obtained from third parties to re-use their material. Excluded Material may not be licensed under a CC BY license and can only be used in accordance with the specific terms of use attached to that material or where permitted by the Copyright Act 1968 (Cth).
    [Show full text]