Moraea Insolens | Plantz Africa About:Reader?Url=
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiation in the Cape Flora and the Phylogeny of Peacock Irises Moraea
ARTICLE IN PRESS MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution xxx (2002) xxx–xxx www.academicpress.com Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions Peter Goldblatt,a Vincent Savolainen,b,* Obie Porteous,b Ivan Sostaric,b Martyn Powell,b Gail Reeves,c John C. Manning,c Timothy G. Barraclough,d and Mark W. Chaseb a Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166, USA b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK c National Botanical Institute, Kirstenbosch, Private Bag X7, Cape Town, South Africa d Department of Biology and NERC Centre for Population Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Received 2 February 2002; received in revised form 22 April 2002 Abstract Phylogenetic analyses of four plastid DNA regions, the rbcL exon, trnL intron, trnL–trnF intergenic spacer, and rps16 intron from each of 73 species in the African genus Moraea (Iridaceae: Irideae) including accessions of all major species clusters in the genus, show Moraea to be paraphyletic when Barnardiella, Galaxia, Hexaglottis, Homeria (all southern African), and Gynandriris (Eurasian as well) were recognized as separate genera. There are several small, isolated species clusters at the basal nodes of the tree that are all restricted to the winter-rainfall zone of southern Africa (the Greater Cape floral kingdom) and a few, highly derived, large species groups that have radiated extensively within the winter-rainfall zone. Mapping of floral traits shows that an Iris-type flower is ancestral in Moraea. -
SIGNA: Species Iris Group of North America 31Th Species Seed Exchange
SIGNA: Species Iris Group of North America 1997 o 31th Species Seed Exchange Greetings: Orders will be filled in the order received. Return immediately for the best selection. Our first shipment of seeds will begin January 10. Orders received after that date will be filled as time permits. No orders will be filled if received after March 1, 1998. After each item in the seed list you will find a number estimating the total number of seeds available. Donations with fewer than 100 seeds will most likely be sold out early. Be sure to check substitutes when ordering any of these seeds. They will not be used as substitutes. Seeds in short supply may be packed with as few as 4 seeds. If you want items with more seeds per packet, order items in greater supply. Please note the following abreviations used in the seedlist: H P means Hand Pollinated, coli. means Wild Collected, and ex. indicates that the plants that seeds were collected from were originally from another source (which may be a person, another seed exchange, or a wild location) which immediately follows the abbreviation. The alphabetical groups (A, B, C, etc.) used in the seed list follow the outline provided in the SIGNA Species Iris Study Manual'publlshed in 1972, e.g. sub-section Pogoniris, series Pumilae is under A, sub-section Pogoniris, series Intermedeae in under B and so on. The Study Manual , The Iris by Brian Mathew, and Iris of China by James Waddick and Zhao Yu-tang are used as references when verifying names. -
Systematics of the Hypervariable Moraea Tripetalacomplex
Bothalia 42,2: 111– 135 (2012) Systematics of the hypervariable Moraea tripetala complex (Iridaceae: Iridoideae) of the southern African winter rainfall zone P. gOLDBLATT* and J.C. MAnnIng** Keywords: Chromosome cytology, Iridaceae, Iridoideae, Moraea Mill., new species, southern Africa, taxonomy ABSTRACT Field and laboratory research has shown that the Moraea tripetala complex of western South Africa, traditionally treated as a single species, sometimes with two additional varieties, has a pattern of morphological and cytological variation too complex to be accommodated in a single species. Variation in floral structure, especially the shape of the inner tepals, degree of union of the filaments, anther length and pollen colour form coherent patterns closely correlated with morphology of the corm tunics, mode of vegetative reproduction, and in some instances capsule and seed shape and size. The morphological patterns also correlate with geography, flowering time and sometimes habitat. It is especially significant that different vari- ants of the complex may co-occur, each with overlapping or separate flowering times, a situation that conflicts with a single species taxonomy. We propose recognizing nine species and three additional subspecies for plants currently assigned to M. tripetala. M. grandis, from the western Karoo, has virtually free filaments and leaves often ± plane distally; closely allied M. amabilis, also with ± free filaments and often hairy leaves, is centred in the western Karoo and Olifants River Valley. Its range overlaps that of M. cuspidata, which has narrowly channelled, smooth leaves, linear inner tepals spreading distally and filaments united for up to 1.5 mm.M. decipiens from the Piketberg, M. hainebachiana, a local endemic of coastal limestone fynbos in the Saldanha District, M. -
Gideon Smith Have Access to Such a Fine Botanical | in THIS ISSUE | Library, Regarded by Many As the Editorialeditorialeditorial 222 Largest of Its Kind in Africa
Volume 4 No. 1 ISSN 1027–4286 April 1999 PROFILE: Gideon Smith have access to such a fine botanical | IN THIS ISSUE | library, regarded by many as the EditorialEditorialEditorial 222 largest of its kind in Africa. Realising PPPrrrofile: Gideon Smith 333 this, and how isolated many southern How to write articles for publication (5) 777 African herbaria and botanical gar- Botanical Gardens Needs Assessment Update 999 dens are in terms of access to recent Grass Identification Training Course 232323 (and indeed much of the earlier) Southern African Society for Systematic Biology 272727 literature, we started Hugh Glen’s FFFrrrom the Wom Webebeb 313131 regular column—appropriately called Flora zambesiaca update 343434 RRRararare succulents in the Eastern Cape/Little Karararoooooo 353535 The Paper Chase—in the April 1997 Sting in the tail 373737 edition of our newsletter. This regular New International Agenda for Botanic Gardens 393939 feature has grown over the past two Historic South African Garden Curators’ MeetingMeetingMeeting 454545 years, and I trust still serves the PPPostgraduates supported by SABONETONETONET 464646 purpose initially intended amongst Southern African herbaria. Part 3. PREPREart 474747 southern African botanists, and even Index herbariorum: southern African supplement 505050 those outside southern Africa. Should Species Plantarum: Flora of the Worldorldorld 525252 you know of any new book written ObituarObituarObituary: Leslie Codd 565656 about southern Africa’s plants, we The PPThe aper Chase 585858 would like to hear from you. E-mail addressesessesesses 666666 Regional News Update 737373 It is impossible to mention everything that is happening within the region, FRONT COVER: Caricature of Gideon Smith. Drawn by Gerhard Marx (1990). -
Patterns in Evolution in Characters That Define Iris Subgenera And
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 34 2006 Patterns in Evolution in Characters That Define rI is Subgenera and Sections Carol A. Wilson Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wilson, Carol A. (2006) "Patterns in Evolution in Characters That Define rI is Subgenera and Sections," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 34. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/34 Aliso 22, pp. 425-433 © 2006, Rancho Santa Ana Botanic Garden PATTERNS OF EVOLUTION IN CHARACTERS THAT DEFINE IRIS SUBGENERA AND SECTIONS CAROL A. WILSON Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA (carol. wilson@ cgu. edu) ABSTRACT Subgeneric groups have been circumscribed in Iris based on a small number of morphological characters. Recent DNA sequence data has indicated that several of the subgenera, sections, and series that have previously been delineated are paraphyletic or polyphyletic. The evolution of characters that have traditionally been used to distinguish sub generic and sectional groups within Iris was investigated by mapping these characters on a phylogenetic tree based on matK sequence data. Results indicate that rhizomes are pleisomorphic for the genus and that three bulb types have arisen independently. My analysis shows that sepal beards, sepal crests, and seed arils show extensive homoplasy. Most of the homoplasy seen is associated with the circumscription of polyphyletic subgeneric groups such as the beardless subgenus Limniris. Some additional homoplasy is due to diversity within supported clades or the historical use of a single character in circumscribing more than one subgeneric group. -
Insights from Microsporogenesis in Asparagales
EVOLUTION & DEVELOPMENT 9:5, 460–471 (2007) Constraints and selection: insights from microsporogenesis in Asparagales Laurent Penet,a,1,Ã Michel Laurin,b Pierre-Henri Gouyon,a,c and Sophie Nadota aLaboratoire Ecologie, Syste´matique et Evolution, Batiment 360, Universite´ Paris-Sud, 91405 Orsay Ce´dex, France bUMR CNRS 7179, Universite´ Paris 6FPierre & Marie Curie, 2 place Jussieu, Case 7077, 75005 Paris, France cMuse´um National d’Histoire Naturelle, De´partement de Syste´matique et Evolution Botanique, 12 rue Buffon, 75005 Paris CP 39, France ÃAuthor for correspondence (email: [email protected]) 1Current address: Department of Biological Sciences, University of Pittsburgh, 4249 Fifth & Ruskin, Pittsburgh, PA 15260, USA. SUMMARY Developmental constraints have been proposed different characteristics of microsporogenesis, only cell to interfere with natural selection in limiting the available wall formation appeared as constrained. We show that set of potential adaptations. Whereas this concept has constraints may also result from biases in the correlated long been debated on theoretical grounds, it has been occurrence of developmental steps (e.g., lack of successive investigated empirically only in a few studies. In this article, cytokinesis when wall formation is centripetal). We document we evaluate the importance of developmental constraints such biases and their potential outcomes, notably the during microsporogenesis (male meiosis in plants), with an establishment of intermediate stages, which allow emphasis on phylogenetic patterns in Asparagales. Different development to bypass such constraints. These insights are developmental constraints were tested by character discussed with regard to potential selection on pollen reshuffling or by simulated distributions. Among the morphology. INTRODUCTION 1991) also hindered tests using the concept (Pigliucci and Kaplan 2000). -
3.7.10 Curculioninae Latreille, 1802 Jetzt Beschriebenen Palaearctischen Ceuthor- Rhynchinen
Curculioninae Latreille, 1802 305 Schultze, A. (1902): Kritisches Verzeichniss der bis 3.7.10 Curculioninae Latreille, 1802 jetzt beschriebenen palaearctischen Ceuthor- rhynchinen. – Deutsche Entomologische Zeitschrift Roberto Caldara , Nico M. Franz, and Rolf 1902: 193 – 226. G. Oberprieler Schwarz, E. A. (1894): A “ parasitic ” scolytid. – Pro- ceedings of the Entomological Society of Washington 3: Distribution. The subfamily as here composed (see 15 – 17. Phylogeny and Taxonomy below) includes approx- Scudder, S. H. (1893): Tertiary Rhynchophorous Coleo- ptera of the United States. xii + 206 pp. US Geological imately 350 genera and 4500 species (O ’ Brien & Survey, Washington, DC. Wibmer 1978; Thompson 1992; Alonso-Zarazaga Stierlin, G. (1886): Fauna insectorum Helvetiae. Coleo- & Lyal 1999; Oberprieler et al. 2007), provisionally ptera helvetiae , Volume 2. 662 pp. Rothermel & Cie., divided into 34 tribes. These are geographically Schaffhausen. generally restricted to a lesser or larger degree, only Thompson, R. T. (1973): Preliminary studies on the two – Curculionini and Rhamphini – being virtually taxonomy and distribution of the melon weevil, cosmopolitan in distribution and Anthonomini , Acythopeus curvirostris (Boheman) (including Baris and Tychiini only absent from the Australo-Pacifi c granulipennis (Tournier)) (Coleoptera, Curculion- region. Acalyptini , Cionini , Ellescini , Mecinini , idae). – Bulletin of Entomological Research 63: 31 – 48. and Smicronychini occur mainly in the Old World, – (1992): Observations on the morphology and clas- from Africa to the Palaearctic and Oriental regions, sifi cation of weevils (Coleoptera, Curculionidae) with Ellescini, Acalyptini, and Smicronychini also with a key to major groups. – Journal of Natural His- extending into the Nearctic region and at least tory 26: 835 – 891. the latter two also into the Australian one. -
JUDD W.S. Et. Al. (1999) Plant Systematics
CHAPTER8 Phylogenetic Relationships of Angiosperms he angiosperms (or flowering plants) are the dominant group of land Tplants. The monophyly of this group is strongly supported, as dis- cussed in the previous chapter, and these plants are possibly sister (among extant seed plants) to the gnetopsids (Chase et al. 1993; Crane 1985; Donoghue and Doyle 1989; Doyle 1996; Doyle et al. 1994). The angio- sperms have a long fossil record, going back to the upper Jurassic and increasing in abundance as one moves through the Cretaceous (Beck 1973; Sun et al. 1998). The group probably originated during the Jurassic, more than 140 million years ago. Cladistic analyses based on morphology, rRNA, rbcL, and atpB sequences do not support the traditional division of angiosperms into monocots (plants with a single cotyledon, radicle aborting early in growth with the root system adventitious, stems with scattered vascular bundles and usually lacking secondary growth, leaves with parallel venation, flow- ers 3-merous, and pollen grains usually monosulcate) and dicots (plants with two cotyledons, radicle not aborting and giving rise to mature root system, stems with vascular bundles in a ring and often showing sec- ondary growth, leaves with a network of veins forming a pinnate to palmate pattern, flowers 4- or 5-merous, and pollen grains predominantly tricolpate or modifications thereof) (Chase et al. 1993; Doyle 1996; Doyle et al. 1994; Donoghue and Doyle 1989). In all published cladistic analyses the “dicots” form a paraphyletic complex, and features such as two cotyle- dons, a persistent radicle, stems with vascular bundles in a ring, secondary growth, and leaves with net venation are plesiomorphic within angio- sperms; that is, these features evolved earlier in the phylogenetic history of tracheophytes. -
Cape Tulips (Moraea Flaccida & M. Miniata), Managing Weeds In
Biological control \ Correct timing is fundamental to successful cape tulip control. Biological control for cape tulip in Western Australia is currently Develop works programs and organise contractors at the beginning being investigated by CSIRO Entomology and the Department of of each year. MANAGING WEEDS IN BUSHLAND Agriculture and Food, Western Australia. The study involves the identification of potential biological control agents such as weevils Reference and further information: that feed on corms and a beetle that feeds on seed. There is also Brown, K. & Brooks, K. (2002) Bushland Weeds; A Practical Guide to Their potentially a rust fungus Puccinia moraeae that affects leaves. Management. Environmental Weeds Action Network, Greenwood WA. Cape Tulips (Moraea flaccida and Moraea miniata). CSIRO web site (Last Key points Updated: 11 October, 2005). http://www.ento.csiro.au/weeds/capetulip/. Hussey, B.M.J., Keighery, G.J., Cousens, R.D., Dodd, J. & Lloyd, S.G. (1997) Cape tulip is a significant threat to bushlands and wetlands of south-west Australia. Western weeds. A guide to the weeds of Western Australia. The Plant Protection Society of Western Australia, Victoria Park. One-leaf cape tulip produces seeds and has a single basal Manning, J., Goldblatt, P. & Snijman, D. (2002) The color encyclopedia of leaf. Two-leaf cape tulip is distinguished by a scaly Cape bulbs. Timber Press, Oregon. covering around the corm, cormil production in leaf axils and around the parent corm, the presence of two or three Moore, J.H. & Wheeler, J. (2002) Southern weeds and their control. basal leaves and by the fact that it does not produce seed. -
Federal Noxious Weed List Effective As of December 10, 2010
Federal Noxious Weed List Effective as of December 10, 2010 Aquatic Latin Name Author(s) Common Name(s) Azolla pinnata R. Brown Mosquito fern, water velvet Caulerpa taxifolia (Vahl) C. Agardh Killer algae (Mediterranean strain) Eichhornia azurea (Swartz) Kunth Anchored waterhyacinth, rooted waterhyacinth Hydrilla verticillata (L.) Royle Hydrilla Hygrophila polysperma T. Anderson Miramar weed Ipomoea aquatica Forsskal Water-spinach, swamp morning glory Lagarosiphon major (Ridley) Moss African elodea Limnophila sessiliflora (Vahl) Blume Ambulia Melaleuca quinquenervia (Cavanilles) S.T. Blake Broadleaf paper bark tree Monochoria hastata (Linnaeus) Solms-Laubach Arrowleaf false pickerelweed Monochoria vaginalis (N.L. Burm.) K. Presl Heartshape false pickerelweed Ottelia alismoides (L.) Pers. Duck lettuce Sagittaria sagittifolia Linnaeus Arrowhead Salvinia auriculata Aublet Giant salvinia Salvinia biloba Raddi Giant salvinia Salvinia herzogii de la Sota Giant salvinia Salvinia molesta D.S. Mitchell Giant salvinia Solanum tampicense Dunal Wetland nightshade Sparganium erectum Linnaeus Exotic bur-reed Parasitic Latin Name Author(s) Common Name(s) Aeginetia spp. Linnaeus Varies by species Alectra spp. Thunb. Varies by species Cuscuta spp.(except for Linnaeus Dodders natives) Orobanche spp. (except for Linnaeus Broomrapes natives) Striga spp. Lour. Witchweeds Last updated 2/1/2012 Terrestrial Latin Name Author(s) Common Name(s) Acacia nilotica (L.) Willd. ex Delile Prickly acacia Ageratina adenophora (Sprengel) King & Robinson Crofton weed Ageratina -
SABG Newsletter No. 37 July 2018
Southern African Bulb Group www.sabg.tk SABG Newsletter no. 37 July 2018 Newsletter Editor: Richard White sabg @ rjwhite .tk Contents News.......................................................................................................................1 Dates for your diary................................................................................................1 From the Editor.......................................................................................................1 Notices and Requests..............................................................................................2 Remembering Rod and Rachel.......................................................................................................2 SABG Bulb and Seed Exchange 2018............................................................................................2 Veltheimia bracteata free to members............................................................................................3 Request for hardiness experiences.................................................................................................3 Request for information about suppliers........................................................................................4 GDPR matters................................................................................................................................4 SABG meetings......................................................................................................5 Report on the Spring 2018 SABG meeting.....................................................................................5 -
First Complete Account of the Genus Lachenalia Published
Book Review First complete account of the genus Lachenalia Page 1 of 1 First complete account of the genus BOOK TITLE: Lachenalia published The genus Lachenalia AUTHOR: South Africa is home to 6% of the world’s approximately 370 000 plant species, making it the country with the Graham Duncan richest temperate flora in the world. This dazzling diversity includes many large genera, and it is not often that a monograph appears that describes an entire, large genus. Lachenalia (also known as Cape hyacinths or viooltjies) is one such large genus. It has 133 known species that are confined to South Africa and (marginally) southern ISBN: Namibia. These endemic plants have been popular with specialist bulb growers worldwide for over 100 years. 9781842463826 The publication in 2012 of a comprehensive account of the genus marks the culmination of the life’s work of two 20th-century South African plant taxonomists whose work between 1929 and 2012 has spanned more than PUBLISHER: eight decades. Kew Publishing, Royal Botanical Gardens, Kew, Early records of Lachenalia date back to the late 17th century. In 1880, the Kew botanist John Baker published GBP120 (hardcover) an account that described 27 species, divided among six genera. Baker later described more species, which culminated in 1897 in a monograph (published in the 6th volume of Flora Capensis) that recognised 42 species in five sub-genera. Most of the subsequent taxonomic work was done by Ms Winsome Barker, first curator of PUBLISHED: the Compton Herbarium at Kirstenbosch. Her first publication on the genus appeared in 1930, and over the 2012 next 59 years she described 47 new species and 11 new varieties.