Chenopodium Formosanum Koidz.) Flour

Total Page:16

File Type:pdf, Size:1020Kb

Chenopodium Formosanum Koidz.) Flour Journal of Agricultural Science; Vol. 7, No. 6; 2015 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Rheological Properties of Dough and Quality of Salted Noodles Supplemented with Djulis (Chenopodium formosanum Koidz.) Flour 1 1 1 1 2 Po-Hsien Li , Wen-Chien Lu , Chang-Wei Hsieh , Tai-Chen Li & Da-Wei Huang 1 Department of Medicinal Botanical and Health Applications, Da-Yeh University, Changhua, Taiwan 2 Department of Food & Beverage Management, China University of Science and Technology, Taipei City, Taiwan Correspondence: Po-Hsien Li, Department of Medicinal Botanical and Health Applications, Da-Yeh University, No.168, University Rd., Dacun, Changhua 51591, Taiwan. Tel: 886-4-851-1655 ext. 6233. E-mail: [email protected] Received: March 11, 2015 Accepted: April 12, 2015 Online Published: May 15, 2015 doi:10.5539/jas.v7n6p84 URL: http://dx.doi.org/10.5539/jas.v7n6p84 Abstract Djulis (Chenopodium formosanum Koidz.) has attracted attention worldwide for its nutritional value and health benefit. To examine the potential application of djulis flour in oriental starch-based staple products, we supplemented wheat flour with djulis flour in different proportions to investigate the rheological properties of dough and determine the sensory and textural profile of salted noodles. For dough characteristics measured by farinography and extensography, increased amount of djulis flour decreased the departure time, stability, arrival time and extensibility of dough, but increased the maximum resistance to extension. The cooking loss and hardness of salted noodles increased with increased amount of djulis flour. However, the overall sensory acceptability did not differ between salted noodles with djulis flour and controls (p < 0.05). In conclusion, djulis flour could be proportional incorporated into wheat flour and have a positive influence on salted noodle sensory quality. Keywords: djulis, salted noodle, dough characteristics, sensory quality 1. Introduction Djulis (Chenopodium formosanum Koidz.), belonging to the Chenopodium genus, is an annual crop plant traditionally used by the people worldwide. Djulis grains are edible, commonly served as fermented materials in the process of making liquor, and possess highly nutritional and functional components such as essential amino acids, dietary fiber, betanin, daidzein and genistein (Tsai et al., 2010; Lutz et al., 2013). The well-recognized nutritive value allowed this genus plant to be included in the NASA list of candidate crops for life support in outer space (Schlick & Bubenheim, 1996). Djulis contains a natural antioxidant betanin and has shown ferric reducing ability of plasma and DPPH scavenging capacity (Tsai et al., 2010). Feeding animals with djulis grain nanoparticles reduced plasma low-density lipoprotein cholesterol and total cholesterol levels (Tsai et al., 2011). This crop plant has ethnobotany value; however, the application of the crop to food has received little study. There is a new tendency to incorporate high-volume fractions of plant materials to the basic ingredients of wheat flour (De Oliveira et al., 2006; Koh et al., 2011; Li et al., 2012; Choy et al., 2013). Such incorporated ingredients can provide different flavors, colors, additional nutrients and, often, health benefits. However, these incorporations have significant effects on the physicochemical properties of the dough (Silva et al., 2013) and sensory properties of products (Han et al., 2013). The addition of legume flours to durum wheat flour causes deteriorated cooking quality and textural properties of these products (Petitot et al., 2010). Noodles prepared with 20% buckwheat flour showed increased antioxidant rutin content and enhanced quality of instant noodles (Choy et al., 2013). Salted noodles based on blends of wheat flour and 5% to 15% purple yam flour show increased water adsorption and decreased dough stability on farinography, and the purple yam enrichment conferred redness to the salted noodles as a pleasant purple-red color for consumers (Li et al., 2012). Noodle products are the wheat flour-based staple food in many parts of Asia; they have been consumed for thousands of years. Traditional salted noodles are made from common ingredients (wheat flour, water and salt), 84 www.ccsenet.org/jas Journal of Agricultural Science Vol. 7, No. 6; 2015 and although claimed to be rich in carbohydrate, they lacks other essential nutritional components, which are removed during wheat flour refinement (Choo & Azin, 2010). Nowadays, foods with high nutritional value and functional properties of supplements are popular. In this study, we aimed to investigate the physical and sensory properties of salted noodles with wheat flour partly superseded by djulis flour. The rheological properties of dough with wheat flour and djulis flour blends were investigated by farinography and extensography. 2. Materials and Methods 2.1 Wheat Flour Wheat flour was provided by Chi-Fa Enterprise Co. (Taichung, Taiwan), which was composed of hard red spring wheat and hard red winter wheat in a 2:3 ratio. The moisture, crude protein, and ash content of wheat flour were 13.52%, 11.74%, and 0.35%, respectively. 2.2 Djulis Flour Djulis (Chenopodium formosanum Koidz.) (Figure 1) was cultivated on November 2013 at a local farm (Pingtung, Taiwan). Djulis grains were separated, sieved, washed and then dried by a vacuum-freeze drier. The dried djulis grains were blended by use of a domestic blender and passed through a 100-mesh (150 μm) sieve. The djulis flour was collected and stored in a freezer with a double-bagged polyethylene. The moisture, crude protein, and ash content of djulis flour were 9.45%, 8.43%, and 0.25%, respectively. Figure 1. Appearance of djulis (Chenopodium formosanum Koidz.) 2.3 Preparation of Blended Samples Djulis flour were blended individually with wheat flour at ratios of 0/100 (djulis flour/wheat flour), 5/95, 10/90, 15/85, and 20/80. Mixing was on a weight (w/w) basis, as described by Zaidul et al. (2007). 2.4 Dough Characteristics The rheological characteristics of dough prepared from control wheat flour and mixtures of wheat flour and djulis flour were determined by farinograph (E-380, Brabender OHG, Germany) according to AACC (2000) standard method. Dough strength was evaluated in terms of farinograph water absorption, dough development time, departure time, dough stability, arrival time and mixing tolerance index were recorded manually. The thermostate of the farinograph was adjusted to maintain the temperature at 30 oC. For extension tests dough was prepared using the farniograph. The extension tests were conducted in accordance with the standard procedure, using the extensograph (Brabender OHG, Germany). The following indices were determined: extensibility and resistance to extension. Measurements of the above farinograph and extensograph 85 www.ccsenet.org/jas Journal of Agricultural Science Vol. 7, No. 6; 2015 indices were made in four replications. 2.5 Preparation of Salted Noodles Salted noodles were prepared as previously described (Li et al., 2012) and with modification. The wheat flour was supplemented with different proportions of djulis flour and blended thoroughly, and then 300 g of each mixture was mixed 102 mL of distilled water (25 oC) containing 6 g of salt at 10 rpm for 8 min to form dough. Dough was passed through the rollers of a noodle machine (Ohtake Noodle Machine Mfg. Co., Tokyo, Japan) at 8 rpm and a 3 mm gap. Folding and sheeting were repeated twice more. The dough sheet was allowed to rest for 30 min, and then was put through the sheeting rolls 3 times at progressively decreasing roll gaps of 2.60, 2.33, and 2.00 mm, and then, the dough sheets were cut into noodle strips of 3 mm in width. Finally, the noodle strips were cut in lengths of 20 cm and air dried at room temperature. Dried noodles were stored in sealed polyethylene bags for further measurements. 2.6 Optimal Cooking Time The optimal cooking time for each sample was determined by using the AACC Method 66-50 (AACC, 2000). It was evaluated by observing the time of disappearance of the white core of the noodle strands during cooking (every 15 s), by squeezing the noodle strands between 2 transparent glass slides. 2.7 Water Absorption Dry noodles (10 g) were boiled in 300 mL boiling water until the white core inside the noodles disappeared, placed in cool water for 5 min, then placed on filter paper for 5 min to remove excess water. Water absorption of the noodles was calculated by the following equation: MM(1 W ) Water absorption (%) = 12 100 (1) MW2 (1 ) Where, M1 is the weight of noodles after cooking (g); M2 is the weight of noodles before cooking (g); and W is the moisture content of noodles before cooking (%). 2.8 Cooking Loss Cooking loss was measured according to the AACC Method 66-50 (AACC, 2000). Cooking water was evaporated and dried at 105 oC to a constant weight. Cooking loss was expressed as a percentage of dry matter lost during cooking to dry sample weight. M Cooking loss (%) = 100 (2) GW(1 ) Where, M is the weight of dry matter (g); G is the weight of noodles before cooking; and W is the moisture content of noodles before cooking (%). 2.9 Color Measurements The color of the salted noodles with different proportions of djulis flour was measured with use of a colorimeter (SE2000, Nippon Denshoku Co., Japan) equipped with D65 illuminant, using the CIE 1976 L*, a* and b* color scale. L* was a measurement of brightness (0-100), a* represents the red-green coordinates while b* measures the blue-yellow coordinates of a product. A piece of the cooked noodle sheets was placed in the sample holder and the surface color was measured at 3 different positions. 2.10 Texture Profile Analysis The hardness, cohesiveness, springiness, gumminess, and chewiness of the cooked salted noodles were tested by the texture profile analysis (TPA) with a texture analyzer (TA-XT2, Stable Micro Systems, UK).
Recommended publications
  • Genus Species/Common Names Report Genus/Species Common Name
    Genus Species/Common Names Report Genus/Species Common Name Abeliophyllum Distichum White-forsythia Abelmoschus Esculentus Okra Abelmoschus Manihot Manioc-hibiscus Sunset-hibiscus Abies Alba European Silver Fir Silver Fir White Fir Abies Balsamea American Silver Fir Balm of Gilead Balsam Canada Balsam Fir Eastern Fir Abies Concolor Colorado Fir Colorado White Fir Silver Fir White Fir Abies Grandis Giant Fir Grand Fir Lowland Fir Lowland White Fir Silver Fir White Fir Yellow Fir Abies Homolepis Nikko Fir Abies Koreana Korean Fir Abies Pectinata Silver Fir Abies Sachalinensis Sakhalin Fir Abies Sibirica Siberian Fir Abies Veitchii Christmastree Veitch Fir Thursday, January 12, 2017 Page 1 of 229 Genus Species/Common Names Report Genus/Species Common Name Abies Veitchii Veitch's Silver Fir Abronia Villosa Desert Sand-verbena Abrus Fruticulosus No common names identified Abrus Precatorius Coral-beadplant Crab's-eye Indian-licorice Jequirity Jequirity-bean Licorice-vine Love-bean Lucky-bean Minnie-minnies Prayer-beads Precatory Precatory-bean Red-beadvine Rosary-pea Weatherplant Weathervine Acacia Arabica Babul Acacia Egyptian Acacia Indian Gum-arabic-tree Scented-thorn Thorn-mimosa Thorny Acacia Acacia Catechu Black Cutch Catechu Acacia Concinna Soap-pod Acacia Dealbata Mimosa Silver Wattle Acacia Decurrens Green Wattle Acacia Farnesiana Cassie Huisache Thursday, January 12, 2017 Page 2 of 229 Genus Species/Common Names Report Genus/Species Common Name Acacia Farnesiana Opopanax Popinac Sweet Acacia Acacia Mearnsii Black Wattle Tan Wattle
    [Show full text]
  • Synbiotic Combination of Djulis (Chenopodium Formosanum) and Lactobacillus Acidophilus Inhibits Colon Carcinogenesis in Rats
    nutrients Article Synbiotic Combination of Djulis (Chenopodium formosanum) and Lactobacillus acidophilus Inhibits Colon Carcinogenesis in Rats Chih-Wei Lee 1, Hong-Jhang Chen 2, Yu-Hua Chien 1, Shih-Min Hsia 1,3,4,5 , Jiann-Hwa Chen 6 and Chun-Kuang Shih 1,4,7,* 1 School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (C.-W.L.); [email protected] (Y.-H.C.); [email protected] (S.-M.H.) 2 Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan; [email protected] 3 Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan 4 School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan 5 Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan 6 Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Tzu Chi Hospital, New Taipei City 23142, Taiwan; [email protected] 7 Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan * Correspondence: [email protected]; Tel.: +886-(2)-2736-1661 (ext. 6569) Received: 24 November 2019; Accepted: 26 December 2019; Published: 30 December 2019 Abstract: Djulis is a functional grain containing prebiotic dietary fiber, which has an anti-cancer potential. This study examined the preventive effect of djulis alone or in combination with Lactobacillus acidophilus on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS). Rats were divided into five groups and fed B (AIN-93G, blank), C (AIN-93G, control), D (10% djulis), DLA (10% djulis plus 5 106 cfu L.
    [Show full text]
  • STATE of COLORADO Annual Report for Calendar Year 2013 to the W-6 Technical Committee Compiled by Mark A
    STATE OF COLORADO Annual Report for Calendar Year 2013 to the W-6 Technical Committee Compiled by Mark A. Brick, June 18, 2014 Orders for germplasm from the NPGS constituted delivery of accessions from both clonal repositories and Plant Introduction Stations. 4308 accessions were delivered that constituted 140 orders in Colorado during calendar year 2013. Fifty one of these orders were from the National Center for Genetic Resource Preservation or the USDA. This represented an significant increase in orders from the previous year (2,719 in 2012). Orders were made from the following locations: COR, CUT, DAV, GEN, GSOR, HILO, MAY, MIA, NC7, NE9, NR6, NSGC, NTSL, PALM, PARL, RIV, S9, SOY, and W6. The following is a report of germplasm activities in Colorado during the 2013 calendar year from scientists that responded to a request for information. 1. Dr. Lee Panella, USDA/ARS, Sugarbeet Research Lab., Fort Collins CO received 61 Beta vulgaris accessions and filed the following germplasm evaluations: Fifty sugar beet (Beta vulgaris L.) lines from the USDA-ARS Ft. Collins sugar beet program and four check cultivars were screened for resistance to Beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and storage rot in 2013. The rhizomania evaluation was conducted at the USDA-ARS North Farm in Kimberly, ID which has Portneuf silt loam soil and had been in barley in 2012. The field was fall plowed and in the spring, fertilized (90 lb N and 110 lb P2O5/A) on 19 Apr 13, sprayed with the herbicide Ethotron (2 pt/A), and roller harrowed.
    [Show full text]
  • Betacyanins and Betaxanthins in Cultivated Varieties of Beta Vulgaris L
    molecules Article Betacyanins and Betaxanthins in Cultivated Varieties of Beta vulgaris L. Compared to Weed Beets Milan Skalicky 1,* , Jan Kubes 1 , Hajihashemi Shokoofeh 2 , Md. Tahjib-Ul-Arif 3 , Pavla Vachova 1 and Vaclav Hejnak 1 1 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; [email protected] (J.K.); [email protected] (P.V.); [email protected] (V.H.) 2 Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan 47189-63616, Iran; [email protected] 3 Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; [email protected] * Correspondence: [email protected]; Tel.: +420-22438-2520 Academic Editor: Krystian Marszałek Received: 21 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage.
    [Show full text]
  • Quinoa ﻣﺤﺘﻮﯾﺎﺕ ﻃﺒﻘﻪﺑﻨﺪی ﻋﻠﻤﯽ ﻓﺮﻣﺎﻧﺮو: ﮔﯿﺎه 1 ﮐﯿﻨﻮآ در اﯾﺮان 2 ﻧﮕﺎرﺧﺎﻧﻪ راﺳﺘﻪ: ﻣﯿﺨﮏﺳﺎﻧﺎن 3 ارزش ﻏﺬاﯾﯽ ﺗﯿﺮه: ﺗﺎجﺧﺮوﺳﯿﺎن 4 ﻣﻨﺎﺑﻊ ﮔﻮﻧﻪ: C
    ﮐﻴﻨﻮﺁ ﮐﯿﻨﻮ-آ ﮔﯿﺎﻫﯽ اﺳﺖ ﮐﻪ ﺑﻪ ﺧﺎﻃﺮ داﻧﻪﻫﺎی ﺧﻮراﮐﯽاش ﮐﺎﺷﺘﻪ ﻣﯽﺷﻮد. ﺟﺰو ﻏﻼت ﻧﯿﺴﺖ و ﺑﻪ ﺧﺎﻧﻮاده اﺳﻔﻨﺎج ﺷﺒﺎﻫﺖ دارد. اﯾﻦ ﮔﯿﺎه در آﻣﺮﯾﮑﺎی ﺟﻨﻮﺑﯽ ﻣﯽروﯾﺪ و ﻧﺤﻮه ﻃﺒﺦ داﻧﻪﻫﺎی آن ﻣﺸﺎﺑﻪ ﺑﺮﻧﺞ اﺳﺖ. ﮐﯿﻨﻮآ ﮐﯿﻨﻮا ﮔﯿﺎه ﺑﻮﻣﯽ ﮐﻮهﻫﺎی آﻧﺪ در ﺑﻮﻟﯿﻮی، ﺷﯿﻠﯽ و ﭘﺮو، ﺑﺴﯿﺎر ﺧﻮش ﻫﻀﻢ و ﻣﻨﺒﻊ ﻏﻨﯽ از ﭘﺮوﺗﺌﯿﻦ، آﻫﻦ، ﻓﺴﻔﺮ، اﻧﻮاع وﯾﺘﺎﻣﯿﻦﻫﺎ و اﻣﮕﺎ3 اﺳﺖ. اﯾﻦ ﮔﯿﺎه ﻗﺪﻣﺘﯽ ﺑﯿﺶ از ﭘﻨﺞﻫﺰار ﺳﺎل دارد و اﮐﻨﻮن ﻧﯿﺰ در آﻣﺮﯾﮑﺎی ﺟﻨﻮﺑﯽ در ﺳﻄﺢ وﺳﯿﻌﯽ در ﺣﺎل ﮐﺸﺖ اﺳﺖ. ﮔﯿﺎه ﮐﯿﻨﻮا، ﮔﯿﺎﻫﯽ ﻣﻘﺎوم ﺑﻪ ﺷﺮاﯾﻂ ﮐﻢآﺑﯽ و ﺷﻮری اﺳﺖ . ﻣﯿﺰان ﺑﺮداﺷﺖ آن در ﻫﮑﺘﺎر ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﺮاﯾﻂ ﮐﺸﺖ دو ﺗﺎ ﺷﺶ ﺗﻦ ﻣﯿﺒﺎﺷﺪ. [1] ﮐﯿﻨﻮآ، Chenopodium quinoa ﻣﺤﺘﻮﯾﺎﺕ ﻃﺒﻘﻪﺑﻨﺪی ﻋﻠﻤﯽ ﻓﺮﻣﺎﻧﺮو: ﮔﯿﺎه 1 ﮐﯿﻨﻮآ در اﯾﺮان 2 ﻧﮕﺎرﺧﺎﻧﻪ راﺳﺘﻪ: ﻣﯿﺨﮏﺳﺎﻧﺎن 3 ارزش ﻏﺬاﯾﯽ ﺗﯿﺮه: ﺗﺎجﺧﺮوﺳﯿﺎن 4 ﻣﻨﺎﺑﻊ ﮔﻮﻧﻪ: C. quinoa ﻧﺎم ﻋﻠﻤﯽ ﮐﻴﻨﻮﺁ ﺩﺭ ﺍﯾﺮﺍﻥ Chenopodium quinoa در ﺳﺎل 1387، ﻣﺆﺳﺴﻪ اﺻﻼح ﺗﻬﯿﻪ ﻧﻬﺎل و ﺑﺬر، ﺑﺎ واردات ﺑﺬر اﯾﻦ ﮔﯿﺎه ﺗﻨﻬﺎ ﺗﻮاﻧﺴﺖ ﻋﻤﻠﮑﺮد ﯾﮏ ﺗﻦ در ﻫﮑﺘﺎر داﺷﺘﻪ ﺑﺎﺷﺪ ﮐﻪ ﻣﻮﻓﻘﯿﺖآﻣﯿﺰ ﻧﺒﻮد. در ﺳﺎل 2013 ﮐﻪ ﺳﺎل ﮐﯿﻨﻮآ ﻧﺎﻣﮕﺬاری ﺷﺪه ﺑﻮد، ﻓﺎﺋﻮ ﺑﺮﺧﯽ ارﻗﺎم اﯾﻦ ﮔﯿﺎه را ﺑﻪ ﻫﺸﺖ ﮐﺸﻮر ﻣﻨﺘﻘﻞ ﮐﺮد ﮐﻪ اﯾﺮان ﯾﮑﯽ از اﯾﻦ ﮐﺸﻮرﻫﺎ ﺑﻮد ﻋﻤﻠﮑﺮد ﭼﻬﺎر ﺗﻨﯽ در آب ﺷﯿﺮﯾﻦ ﺑﻪدﺳﺖ آﻣﺪ. در ﺣﺎل ﺣﺎﺿﺮ در اﯾﺮان ﺗﻼش ﻣﯿﺸﻮد ﮐﺎﺷﺖ اﯾﻦ ﮔﯿﺎه در ﻣﻨﺎﻃﻖ ﺷﻮر ﺻﻮرت ﮔﺮﻓﺘﻪ و اﻓﺰاﯾﺶ ﻋﻤﻠﮑﺮد ﺑﻪ دﺳﺖ آﯾﺪ.ﮐﯿﻨﻮآ ﺑﻪﻋﻨﻮان ﻣﺎده ﻏﺬاﯾﯽ ﻣﺠﺎز ﺑﺮای اﻓﺮادی ﮐﻪ ﺑﻪ ﮔﻠﻮﺗﻦ ﻣﻮﺟﻮد در ﮔﻨﺪم ﺣﺴﺎﺳﯿﺖ دارﻧﺪاﺳﺘﻔﺎده ﻣﯿﺸﻮد و در ﺣﺎل ﺣﺎﺿﺮ از اﯾﻦ ﮔﯿﺎه ﺑﺮای ﺗﻮﻟﯿﺪ آرد، ﻏﻨﯽ ﮐﺮدن آرد، ﮔﻨﺪم، ﺗﻮﻟﯿﺪ ﺑﯿﺴﮑﻮﺋﯿﺖ و ﭘﺎﺳﺘﺎ اﺳﺘﻔﺎده ﻣﯽﺷﻮد.[2] [3] ﻧﮕﺎﺭﺧﺎﻧﻪ ﮐم آﺑﯽ و ﺿرورت ﮐﺷت ﮔوﻧﮫ ھﺎی ﻣﻘﺎوم در اﯾران ھﻧوز ﺑﯾش از ﻧﯾﻣﻲ از زﻣﯾﻧﮭﺎی ﺑﺎ ظرﻓﯾت ﮐﺷت و زرع اﯾران، ﺑﮫ دﻟﯾل ﺧﺷﻛﻲ و ﺷوري ﺧﺎك دﺳت ﻧﺧورده ھﺳﺗﻧد و ﻓﺎﺋو ﺗوﺻﯾﮫ ﻧﻣوده ﻛﮫ ﻛﯾﻧوا را ﺣﺗﻲ در اراﺿﻲ ﻓﻘﯾر و ﻟﻣﯾزرع ﻣﯾﺗوان ﻛﺷت ﻧﻣود.
    [Show full text]
  • Chenopodium Formosanum) By-Products and in Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients
    biology Article Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients Po-Hsien Li 1,* , Yung-Jia Chan 2, Ya-Wen Hou 3, Wen-Chien Lu 4,*, Wen-Hui Chen 1,5, Jie-Yun Tseng 1 and Amanda Tresiliana Mulio 1 1 Department of Medicinal Botanical and Health Applications, Da-Yeh University, No. 168, University Rd, Dacun, Changhua 51591, Taiwan; [email protected] (W.-H.C.); [email protected] (J.-Y.T.); [email protected] (A.T.M.) 2 College of Biotechnology and Bioresources, Da-Yeh University, No. 168, University Rd, Dacun, Chang-Hua 51591, Taiwan; [email protected] 3 Fisheries Research Institute, Council of Agriculture, No. 199, Hou-lh Road, Keelung 202008, Taiwan; [email protected] 4 Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, No. 217, Hung-Mao-Pi, Chia-Yi City 60077, Taiwan 5 Nutrition Division, Changhua Lukang Christian Hospital, No. 480, Zhongzheng Rd, Lukang, Changhua 50544, Taiwan * Correspondence: [email protected] (P.-H.L.); [email protected] (W.-C.L.); Tel.: +886-4-851-1888#6233 (P.-H.L.); +886-5-277-2932#860 (W.-C.L.) Simple Summary: According to a report from International Diabetes Federation, in 2020 approxi- mately 463 million adults (20–79 years) were living with diabetes, the principles of medical nutrition Citation: Li, P.-H.; Chan, Y.-J.; Hou, therapy are to decrease the risk of diabetes by encouraging healthy food choices and physical activity.
    [Show full text]
  • Food Bioactive Compounds Against Diseases of the 21St Century 2016
    BioMed Research International Food Bioactive Compounds against Diseases of the 21st Century 2016 Guest Editors: Blanca Hernandez-Ledesma, Chia-Chien Hsieh, and Cristina Martínez-Villaluenga Food Bioactive Compounds against Diseases of the 21st Century 2016 BioMed Research International Food Bioactive Compounds against Diseases of the 21st Century 2016 Guest Editors: Blanca Hernandez-Ledesma, Chia-Chien Hsieh, and Cristina Martínez-Villaluenga Copyright © 2017 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Food Bioactive Compounds against Diseases of the 21st Century 2016 Blanca Hernández-Ledesma, Chia-Chien Hsieh, and Cristina Martínez-Villaluenga Volume 2017, Article ID 1750823, 2 pages Delphinidin-Rich Maqui Berry Extract (Delphinol®) Lowers Fasting and Postprandial Glycemia and Insulinemia in Prediabetic Individuals during Oral Glucose Tolerance Tests Jorge L. Alvarado, Andrés Leschot, Álvaro Olivera-Nappa, Ana-María Salgado, Hernán Rioseco, Carolina Lyon, and Pilar Vigil Volume 2016, Article ID 9070537, 10 pages Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain Eun Yeong Lim and Yun Tai Kim Volume 2016, Article ID 7917528, 12 pages Shrimp Protein Hydrolysate Modulates the Timing of Proinflammatory Macrophages in Bupivacaine-Injured
    [Show full text]
  • Djulis (Chenopodium Formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 7368797, 8 pages http://dx.doi.org/10.1155/2016/7368797 Research Article Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models Yong-Han Hong,1 Ya-Ling Huang,2 Yao-Cheng Liu,2 and Pi-Jen Tsai3 1 Department of Nutrition, I-Shou University, Kaohsiung, Taiwan 2Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan 3Department of Food Science, National Pingtung University of Technology and Science, Pingtung, Taiwan Correspondence should be addressed to Yong-Han Hong; [email protected] Received 12 July 2016; Revised 25 September 2016; Accepted 10 October 2016 Academic Editor: Chia-Chien Hsieh Copyright © 2016 Yong-Han Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis (Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150 g/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer.
    [Show full text]
  • Universidad Autónoma De Nuevo León Facultad De Agronomía
    UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE AGRONOMÍA TESIS CARACTERIZACIÓN DEL CONTENIDO NUTRICIONAL, COMPUESTOS POLIFENÓLICOS Y CAPACIDAD ANTIOXIDANTE DE MAÍCES PIGMENTADOS (Zea mays L.) NATIVOS DEL SUR DE NUEVO LEÓN PRESENTA PABLO ALAN RODRÍGUEZ SALINAS PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS AGRÍCOLAS NOVIEMBRE, 2019 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE AGRONOMÍA TESIS CARACTERIZACIÓN DEL CONTENIDO NUTRICIONAL, COMPUESTOS POLIFENÓLICOS Y CAPACIDAD ANTIOXIDANTE DE MAÍCES PIGMENTADOS (Zea mays L.) NATIVOS DEL SUR DE NUEVO LEÓN PRESENTA PABLO ALAN RODRÍGUEZ SALINAS PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS AGRÍCOLAS GENERAL ESCOBEDO, NUEVO LEÓN, MÉXICO NOVIEMBRE, 2019 ESTA TESIS FUE REVISADA Y APROBADA POR EL COMITÉ PARTICULAR COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS AGRÍCOLAS COMITÉ PARTICULAR DEDICATORIA A mi esposa, Angélica A. Benavides Rodríguez e hijos Pablo Rafael Rodríguez Benavides e Izabela Zoe Rodríguez Benavides por su apoyo durante esta etapa de mi vida. A mis padres, Pablo Rodríguez Velázquez y Rosamaría Salinas Benavides por formarme como persona y por su ejemplo de honestidad y trabajo. A mis hermanos y sus familias, Rosa María Rodríguez Salinas, Juan Pablo Rodríguez Salinas y Diana Navarro. A mis compañeros de generación y maestros por todos los momentos vividos en el aula de clase. AGRADECIMIENTOS Quiero expresar mi más sincero agradecimiento al Dr. Guillermo Niño Medina y al Dr. Francisco Zavala García por su ayuda, valiosos consejos y valiosa aportación para la realización de este trabajo. A la Dra. Vania Urías Orona, Dra. Dolores Muy Rangel y Dr. José Basilio Heredia por formar parte del Comité de Tesis y por sus valiosas sugerencias en la revisión del presente trabajo.
    [Show full text]
  • Common Names/Genus Species Report
    Common Names/Genus Species Report Common Name Genus/Species Aaron's-rod Verbascum Thapsus Abababite Poulsenia Armata Abata Cola Cola Acuminata Absinthe Artemisia Absinthium Absinthium Artemisia Absinthium Abyssinian-kale Crambe Abyssinica Abyssinian Love Grass Eragrostis Tef Abyssinian Myrrh Commiphora Abyssinica Acerola Malpighia Emarginata Malpighia Glabra Malpighia Punicifolia Achacha Garcinia Humilis Acorus Acorus Calamus Adam's-needle Yucca Filamentosa Adder's Fern Polypodium Vulgare Adder's-tongue Ophioglossum Vulgatum Adenophora Adenophora Stricta Adlay Millet Coix Lacryma-Jobi Adzuki-bean Phaseolus Angularis Vigna Angularis African Arrowroot Canna Indica African Bowstring-hemp Sansevieria Trifasciata African Boxwood Myrsine Africana African Copaiba Balsamtree Daniellia Oliveri African Coralwood Pterocarpus Soyauxii African Cucumber Momordica Charantia African Ebony Diospyros Mespiliformis African Elemi Boswellia Frereana Thursday, January 12, 2017 Page 1 of 221 Common Names/Genus Species Report Common Name Genus/Species African Fodder Cane Saccharum Spontaneum African Marigold Tagetes Erecta African Myrrh Commiphora Myrrha African Oil Palm Elaeis Guineensis African Padauk Pterocarpus Soyauxii African Plum Prunus Africana African Potato Hypoxis Hemerocallidea African-spinach Amaranthus Cruentus African-tuliptree Spathodea Campanulata African-walnut Plukenetia Volubilis African Wild Mango Irvingia Gabonensis Agar Gelidium Cartilagineum Agar-agar Gelidium Amansii Gelidium Cartilagineum Agarwood Aquilaria Malaccensis Ageratum Ageratum
    [Show full text]
  • Betalains, Polyacetylenes and Tocols As Biocompounactives: a Concise Review for Enriching the Bioactivity
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274192801 Betalains, Polyacetylenes and Tocols as Biocompounactives: A Concise Review for Enriching the Bioactivity... Article · June 2014 DOI: 10.11648/j.ijnfs.20140304.11 CITATIONS READS 5 252 6 authors, including: Guaadaoui Abdelkarim Noureddine Boukhatem Université Mohammed Premier Université Mohammed Premier 14 PUBLICATIONS 37 CITATIONS 28 PUBLICATIONS 218 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Cell and organ drug targeting View project Cell and organ drug targeting View project All content following this page was uploaded by Guaadaoui Abdelkarim on 29 March 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. International Journal of Nutrition and Food Sciences 2014; 3(4): 230-237 Published online June 20, 2014 (http://www.sciencepublishinggroup.com/j/ijnfs) doi: 10.11648/j.ijnfs.20140304.11 Betalains, polyacetylenes and tocols as biocompounactives: A concise review for enriching the bioactivity concept Abdelkarim GUAADAOUI 1, Rafik SADDIK 2, Abderahime BOUALI 1, Noureddine BOUKHATEM 1, Nour Eddine BENCHAT 2, Abdellah HAMAL 1 1Département de Biologie, Laboratoire de Génétique & Biotechnologie (LGB), Faculté des Sciences – Oujda (FSO), Université Mohammed Premier – Oujda. BP 60000 – Morocco 2Département de Chimie, Laboratoire de Chimie Appliquée & Environnement (LCAE), Faculté des Sciences – Oujda (FSO), Université Mohammed Premier – Oujda. BP 60000 – Morocco Email address: [email protected] (A. GUAADAOUI) To cite this article: Abdelkarim GUAADAOUI, Rafik SADDIK, Abderahime BOUALI, Noureddine BOUKHATEM, Nour Eddine BENCHAT, Abdellah HAMAL.
    [Show full text]
  • Austronesian and Chinese Words for the Millets Laurent Sagart, Tze-Fu Hsu, Yuan-Ching Tsai, Yue-Ie Hsing
    Austronesian and Chinese words for the millets Laurent Sagart, Tze-Fu Hsu, Yuan-Ching Tsai, Yue-Ie Hsing To cite this version: Laurent Sagart, Tze-Fu Hsu, Yuan-Ching Tsai, Yue-Ie Hsing. Austronesian and Chinese words for the millets. Language Dynamics and Change, 2017, 7 (2), pp.187-209. 10.1163/22105832-00702002. hal-03146013 HAL Id: hal-03146013 https://hal.archives-ouvertes.fr/hal-03146013 Submitted on 18 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Language Dynamics and Change 7 (2017) 187–209 brill.com/ldc Austronesian and Chinese words for the millets* Laurent Sagart Centre de Recherches Linguistiques sur l’Asie Orientale/Centre National de la Recherche Scientifique [email protected] Tze-Fu Hsu Academia Sinica [email protected] Yuan-Ching Tsai Academia Sinica [email protected] Yue-Ie C. Hsing Academia Sinica [email protected] Abstract After reviewing recent evidence from related disciplines arguing for an origin of the Austronesian peoples in northeastern China, this paper discusses the Proto-Austro- nesian and Old Chinese names of the millets, Setaria italica and Panicum miliaceum.
    [Show full text]