New Horizons Pluto/KBO Mission Hal Weaver the Johns Hopkins University Applied Physics Laboratory to Pluto and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Messenger
10th anniversary of VLT First Light The Messenger The ground layer seeing on Paranal HAWK-I Science Verification The emission nebula around Antares No. 132 – June 2008 –June 132 No. The Organisation The Perfect Machine Tim de Zeeuw a groundbased spectroscopic comple thousand each semester, 800 of which (ESO Director General) ment to the Hubble Space Telescope. are for Paranal. The User Portal has Italy and Switzerland had joined ESO in about 4 000 registered users and 1981, enabling the construction of the the archive contains 74 TB of data and This issue of the Messenger marks the 3.5m New Technology Telescope with advanced data products. tenth anniversary of first light of the Very pioneering advances in active optics, Large Telescope. It is an excellent occa crucial for the next step: the construction sion to look at the broader implications of the Very Large Telescope, which Winning strategy of the VLT’s success and to consider the received the green light from Council in next steps. 1987 and was built on Cerro Paranal in The VLT opened for business some five the Atacama desert between Antofagasta years after the Keck telescopes, but the and Taltal in Northern Chile. The 8.1m decision to take the time to build a fully Mission Gemini telescopes and the 8.3m Subaru integrated system, consisting of four telescope were constructed on a similar 8.2m telescopes and providing a dozen ESO’s mission is to enable scientific dis time scale, while the Large Binocular Tele foci for a carefully thoughtout comple coveries by constructing and operating scope and the Gran Telescopio Canarias ment of instruments together with four powerful observational facilities that are now starting operations. -
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Submission Completed
Your abstract submission has been received Print this page You have submitted the following abstract to GSA Annual Meeting in Denver, Colorado, USA - 2016. Receipt of this notice does not guarantee that your submission was complete or free of errors. PLUTO IS THE NEW MARS! MOORE, Jeffrey M.1, MCKINNON, William B.2, SPENCER, John R.3, HOWARD, Alan D.4, GRUNDY, William M.5, STERN, S. Alan3, WEAVER, Harold A.6, YOUNG, Leslie A.3, ENNICO, Kimberly1 and OLKIN, Cathy3, (1)NASA Ames Research Center, Space Science Division, MS-245-3, Moffett Field, CA 95129, (2)Washington University, Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, One Brookings Drive, Saint Louis, MO 63130, (3)Southwest Research Institute, Boulder, CO 80302, (4)Department of Environmental Sciences, Univerisity of Virginia, PO Box 400123, Charlottesville, VA 22904-4123, (5)Lowell Observatory, Flagstaff, AZ 86001, (6)Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, [email protected] Data from NASA’s New Horizons encounter with Pluto in July 2015 revealed an astoundingly complex world. The surface seen on the encounter hemisphere ranged in age from ancient to recent. A vast craterless plain of slowly convecting solid nitrogen resides in a deep primordial impact basin, reminiscent of young enigmatic deposits in Mars’ Hellas basin. Like Mars, regions of Pluto are dominated by valleys, though the Pluto valleys are thought to be carved by nitrogen glaciers. Pluto has fretted terrain and halo craters. Pluto is cut by tectonics of several different ages. Like Mars, vast tracts on Pluto are mantled by dust and volatiles. -
Pale Blue Dot Carl Sagan Pdf
Pale blue dot carl sagan pdf Continue This article is about photography. For other purposes, see Pale Blue Dot (disambigation). Photo Planet Earth Voyager 1 of about 6 billion kilometers visible from about 6 billion kilometers (3.7 billion miles), the Earth appears as a tiny dot in deep space: a bluish-white speck almost halfway to the brown stripe on the right. Pale Blue Dot is a photograph of planet Earth taken on February 14, 1990 by the Voyager 1 space probe from a record distance of about 6 billion kilometers (3.7 billion miles, 40.5 AU) as part of a series of images of the solar system that day. In the photo, the visible size of the Earth is smaller than the pixel; The planet looks like a tiny dot against the backdrop of the expanses of space, among the bands of sunlight reflected by the camera. Voyager 1, which completed its main mission and left the solar system, was ordered by NASA to deploy the camera and take the last photograph of Earth in space at the request of astronomer and author Carl Sagan. The phrase Pale Blue Dot was coined by Sagan himself in his reflections on the meaning of photography documented in his 1994 book of the same name. In September 1977, NASA launched the 722-kilogram Voyager 1 robotic spacecraft (1,592 pounds) with a mission to study the space solar system and, eventually, interstellar space. After meeting with the Jovian system in 1979 and Saturn's system in 1980, the main mission was announced to have been completed in November of that year. -
New Horizons Pluto/KBO Mission Impact Hazard
New Horizons Pluto/KBO Mission Impact Hazard Hal Weaver NH Project Scientist The Johns Hopkins University Applied Physics Laboratory Outline • Background on New Horizons mission • Description of Impact Hazard problem • Impact Hazard mitigation – Hubble Space Telescope plays a key role New Horizons: To Pluto and Beyond The Initial Reconnaissance of The Solar System’s “Third Zone” KBOs Pluto-Charon Jupiter System 2016-2020 July 2015 Feb-March 2007 Launch Jan 2006 PI: Alan Stern (SwRI) PM: JHU Applied Physics Lab New Horizons is NASA’s first New Frontiers Mission Frontier of Planetary Science Explore a whole new region of the Solar System we didn’t even know existed until the 1990s Pluto is no longer an outlier! Pluto System is prototype of KBOs New Horizons gives the first close-up view of these newly discovered worlds New Horizons Now (overhead view) NH Spacecraft & Instruments 2.1 meters Science Team: PI: Alan Stern Fran Bagenal Rick Binzel Bonnie Buratti Andy Cheng Dale Cruikshank Randy Gladstone Will Grundy Dave Hinson Mihaly Horanyi Don Jennings Ivan Linscott Jeff Moore Dave McComas Bill McKinnon Ralph McNutt Scott Murchie Cathy Olkin Carolyn Porco Harold Reitsema Dennis Reuter Dave Slater John Spencer Darrell Strobel Mike Summers Len Tyler Hal Weaver Leslie Young Pluto System Science Goals Specified by NASA or Added by New Horizons New Horizons Resolution on Pluto (Simulations of MVIC context imaging vs LORRI high-resolution "noodles”) 0.1 km/pix The Best We Can Do Now 0.6 km/pix HST/ACS-PC: 540 km/pix New Horizons Science Status • -
New Horizons: Reconnaissance of the Pluto-Charon System and The
C.T. Russell Editor New Horizons Reconnaissance of the Pluto-Charon System and the Kuiper Belt Previously published in Space Science Reviews Volume 140, Issues 1–4, 2008 C.T. Russell Institute of Geophysics & Planetary Physics University of California Los Angeles, CA, USA Cover illustration: NASA’s New Horizons spacecraft was launched on 2006 January 19, received a grav- ity assist during a close approach to Jupiter on 2007 February 28, and is now headed for a flyby with closest approach 12,500 km from the center of Pluto on 2015 July 14. This artist’s depiction shows the spacecraft shortly after passing above Pluto’s highly variegated surface, which may have black-streaked surface deposits produced from cryogenic geyser activity, and just before passing into Pluto’s shadow when solar and earth occultation experiments will probe Pluto’s tenuous, and possibly hazy, atmosphere. Sunlit crescents of Pluto’s moons Charon, Nix, and Hydra are visible in the background. After flying through the Pluto system, the New Horizons spacecraft could be re-targeted towards other Kuiper Belt Objects in an extended mission phase. This image is based on an original painting by Dan Durda. © Dan Durda 2001 All rights reserved. Back cover illustration: The New Horizons spacecraft was launched aboard an Atlas 551 rocket from the NASA Kennedy Space Center on 2008 January 19 at 19:00 UT. Library of Congress Control Number: 2008944238 DOI: 10.1007/978-0-387-89518-5 ISBN-978-0-387-89517-8 e-ISBN-978-0-387-89518-5 Printed on acid-free paper. -
A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering). -
Stardust Sample Return
National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey -
An Artificial Impact on the Asteroid (162173) Ryugu Formed a Crater in the Gravity-Dominated Regime M
An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, K. Shirai, H. Sawada, K. Ishibashi, R. Honda, N. Sakatani, et al. To cite this version: M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, et al.. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, American Association for the Advancement of Science, 2020, 368 (6486), pp.67-71. 10.1126/science.aaz1701. hal-02986191 HAL Id: hal-02986191 https://hal.archives-ouvertes.fr/hal-02986191 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted Manuscript Title: An artificial impact on the asteroid 162173 Ryugu formed a crater in the gravity-dominated regime Authors: M. Arakawa1*, T. Saiki2, K. Wada3, K. Ogawa21,1, T. Kadono4, K. Shirai2,1, H. Sawada2, K. Ishibashi3, R. Honda5, N. Sakatani2, Y. Iijima2§, C. Okamoto1§, H. Yano2, Y. 5 Takagi6, M. Hayakawa2, P. Michel7, M. Jutzi8, Y. Shimaki2, S. Kimura9, Y. Mimasu2, T. Toda2, H. Imamura2, S. Nakazawa2, H. Hayakawa2, S. -
Updated Inflight Calibration of Hayabusa2's Optical Navigation Camera (ONC) for Scientific Observations During the C
Updated Inflight Calibration of Hayabusa2’s Optical Navigation Camera (ONC) for Scientific Observations during the Cruise Phase Eri Tatsumi1 Toru Kouyama2 Hidehiko Suzuki3 Manabu Yamada 4 Naoya Sakatani5 Shingo Kameda6 Yasuhiro Yokota5,7 Rie Honda7 Tomokatsu Morota8 Keiichi Moroi6 Naoya Tanabe1 Hiroaki Kamiyoshihara1 Marika Ishida6 Kazuo Yoshioka9 Hiroyuki Sato5 Chikatoshi Honda10 Masahiko Hayakawa5 Kohei Kitazato10 Hirotaka Sawada5 Seiji Sugita1,11 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan 2 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan 3 Meiji University, Kanagawa, Japan 4 Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan 6 Rikkyo University, Tokyo, Japan 7 Kochi University, Kochi, Japan 8 Nagoya University, Aichi, Japan 9 Department of Complexity Science and Engineering, The University of Tokyo, Chiba, Japan 10 The University of Aizu, Fukushima, Japan 11 Research Center of the Early Universe, The University of Tokyo, Tokyo, Japan 6105552364 Abstract The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read- out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC. -
New Horizons Ultima Thule Flyby Events
New Horizons Ultima Thule Flyby Events – Dec 31, 2018 – Jan 3, 2019 Event Date/Time Communications Event Speaker 31 Dec 12:00 PM K‐Center Opens at Noon Guest Ops team 1:00 Welcome Adrian Hill and VIP Welcome 1:05 The New Horizons Mission Alan Stern 1:25 What is the Kuiper Belt and what are Kuiper Belt Hal Weaver Objects 1:30 What We Know About MU69 – Ultima Thule Cathy Olkin 1:35 The Flyby of MU69 – Ultima Thule John Spencer NYE press 2:00 – 3:00 Daily media update on Webcast Mike Buckley; panel: Alan Stern, Helene Winters, John Spencer, Fred Pelletier. 3:15 ‐ 3:45 Flyby Ask Me Anything Webcast Moderator Adrian Hill; Panelists: Kelsi Singer; Alex Parker; Gabe Rogers 3:45 – 3:50 Song ‐ Acoustic Craig Werth – move to dining area 3:50 ‐ 4:45 Exploration for Kids Janet Ivey of Janet’s Planet ‐ dining area 4:45‐4:50 Closeout Afternoon 5:00 Doors Close for 2 hours – dinner break 7:00 PM K center reopens Kick off. 8:00 Welcome Adrian Hill and VIPs 8:10 Solar System Archaeology Ken Lacovara 8:15 NASA’s Study of Ancient Bodies. Small bodies mission panel. OSIRIS‐REx (Barnouin), Lucy (Levison), Psyche (Elkins), NH (Stern) *NASA Rep 9:00 Short break Transition to Guest ops. 9:15 Craig Werth Video Craig Werth 9:20 Doing Geology by Looking Up; Doing Walter Alvarez Astronomy by Looking Down 9:35 Pluto Flyby: Summer of 2015 Hal Weaver 9:50 Pluto and the Human Imagination David Grinspoon 10:10 Break 10:20 Meet the New Horizons Team Alan Stern and Helene Winters 10:30 Finding MU69 – Ultima Thule Marc Buie 10:45 MU69: What we expect to learn Panel: Silvia Protopapa, Hal Weaver, Cathy Olkin, John Spencer 11:00 The Eyes and Ears of New Horizons Kelsi Singer, Kirby Runyon. -
11.10 Authorpge UKUS.Indd MH SA.Indd
Vol 449 | Issue no. 7163 | 11 October 2007 AUTHORS water in addition to Abstractions MAKING THE PAPER organic materials LAST AUTHOR Carolyn Porco and warmer tem- Genetic mutation is central peratures, we may to evolution, but mutations have stumbled upon that improve one aspect Spacecraft’s images suggest one of a habitable zone in of a protein’s function can Saturn’s moons may host water. our Solar System. compromise another. Until This is an explorer’s recently, gene duplication The Cassini spacecraft took seven years to dream come true.” was thought to lead to the reach Saturn. But for Carolyn Porco, who The next step development of genes with novel functions, leads the Cassini imaging team at the Space was to determine as one copy of the gene would be free to Science Institute (SSI) in Boulder, Colorado, the locales of the evolve while the other performed its original the images it sent back were well worth the jets. Porco asked function. But this, it turns out, rarely happens wait. Most exciting of all was the revelation SSI planetary sci- — more often, an original gene’s functions that one of the planet’s moons may have the entist Joseph Spitale to triangulate the surface are simply split between the two copies. essential ingredients to support life. locations of each jet. To ensure that the meas- Sean Carroll, at the University of Wisconsin– Madison, and his student Chris Hittinger A veteran of the 1980s Voyager space mission, urements were made without prejudice, she devised a series of assays to trace how two Porco was well aware that the outer Solar System didn’t tell him her hypothesis of an association genes — GAL1 and GAL3 — in the yeast is not the barren wasteland it was once thought between the hot spots and the jets.