CLEO/P Assessment of a Jovian Moon Flyby Mission As Part of NASA Clipper Mission

Total Page:16

File Type:pdf, Size:1020Kb

CLEO/P Assessment of a Jovian Moon Flyby Mission As Part of NASA Clipper Mission CDF STUDY REPORT CLEO/P Assessment of a Jovian Moon Flyby Mission as Part of NASA Clipper Mission CDF-154(D)Public April 2015 CLEO/P CDF Study Report: CDF-154(D) Public April 2015 page 1 of 198 CDF Study Report CLEO/P Assessment of a Jovian Moon Flyby Mission as Part of NASA Clipper Mission ESA UNCLASSIFIED – Releasable to the Public CLEO/P CDF Study Report: CDF-154(D) Public April 2015 page 2 of 198 FRONT COVER Study logo showing Orbiter and Jupiter with Moon ESA UNCLASSIFIED – Releasable to the Public CLEO/P CDF Study Report: CDF-154(D) Public April 2015 page 3 of 198 STUDY TEAM This study was performed in the ESTEC Concurrent Design Facility (CDF) by the following interdisciplinary team: TEAM LEADER R. Biesbroek, TEC-SYE AOGNC PAYLOAD COMMUNICATIONS POWER CONFIGURATION PROGRAMMATICS/ AIV COST PROPULSION RADIATION RISK DATA HANDLING SIMULATION GS&OPS STRUCTURES MISSION ANALYSIS SYSTEMS MECHANISMS THERMAL ESA UNCLASSIFIED – Releasable to the Public CLEO/P CDF Study Report: CDF-154(D) Public April 2015 page 4 of 198 This study is based on the ESA CDF Integrated Design Model (IDM), which is copyright 2004 – 2014 by ESA. All rights reserved. Further information and/or additional copies of the report can be requested from: T. Voirin ESA/ESTEC/SRE-FMP Postbus 299 2200 AG Noordwijk The Netherlands Tel: +31-(0)71-5653419 Fax: +31-(0)71-5654295 [email protected] For further information on the Concurrent Design Facility please contact: M. Bandecchi ESA/ESTEC/TEC-SYE Postbus 299 2200 AG Noordwijk The Netherlands Tel: +31-(0)71-5653701 Fax: +31-(0)71-5656024 [email protected] ESA UNCLASSIFIED – Releasable to the Public CLEO/P CDF Study Report: CDF-154(D) Public April 2015 page 5 of 198 TABLE OF CONTENTS 1 INTRODUCTION .................................................................................. 11 1.1 Background ............................................................................................................. 11 1.2 Scope ....................................................................................................................... 11 2 EXECUTIVE SUMMARY ...................................................................... 13 2.1 Study Flow ...............................................................................................................13 2.2 Requirements and Design Drivers ..........................................................................13 2.3 Mission ....................................................................................................................13 3 MISSION OBJECTIVES ........................................................................ 17 3.1 Background ............................................................................................................. 17 3.2 Study Objectives ...................................................................................................... 17 3.3 Science Objectives ................................................................................................... 17 3.3.1 Io Flyby Mission (CLEO/I) ............................................................................... 17 3.3.2 Europa Flyby Mission (CLEO/E) .................................................................... 18 4 PAYLOAD ............................................................................................ 19 4.1 Requirements and Design Drivers ......................................................................... 19 4.2 Assumptions ........................................................................................................... 20 4.3 List of Instruments ................................................................................................. 20 4.3.1 Medium Angle Camera .................................................................................... 21 4.3.2 Thermal Imager ............................................................................................... 22 4.3.3 Ion and Neutral Mass Spectrometer ............................................................... 23 4.3.4 Magnetometer .................................................................................................. 23 4.4 Radiation Shielding ................................................................................................ 24 4.4.1 Delocalised Backend Electronics ..................................................................... 24 4.4.2 Front End Shielding ......................................................................................... 25 4.5 Payload Operations ................................................................................................ 25 4.6 Optional Instruments for a Europa Fly-By Mission .............................................. 27 4.6.1 UV Spectrometer.............................................................................................. 27 4.6.2 Neutral and Ion Mass Spectrometer ............................................................... 28 4.6.3 Dust Experiment .............................................................................................. 28 5 MISSION ANALYSIS ........................................................................... 29 5.1 Requirements and Design Drivers ......................................................................... 29 5.1.1 Requirements ................................................................................................... 29 5.1.2 Design Drivers ................................................................................................. 29 5.2 Assumptions and Trade-Offs ................................................................................. 30 5.2.1 CLIPPER .......................................................................................................... 30 5.2.2 Io Science ......................................................................................................... 32 5.2.3 Overview of the Scenarios................................................................................ 33 5.3 Baseline Design ...................................................................................................... 34 5.3.1 From Separation to Io ...................................................................................... 34 ESA UNCLASSIFIED – Releasable to the Public CLEO/P CDF Study Report: CDF-154(D) Public April 2015 page 6 of 198 5.3.2 Fly-by I1 ............................................................................................................ 34 5.3.3 Fly-by I2 ........................................................................................................... 36 5.3.4 Fly-bys Common Features ............................................................................... 38 5.3.5 Communications .............................................................................................. 41 5.3.6 Navigation and Operational Concept .............................................................. 44 5.3.7 Power ................................................................................................................ 45 5.4 Options ................................................................................................................... 45 5.4.1 CLEO-I S1 ......................................................................................................... 45 5.4.2 CLEO-I S3 ........................................................................................................ 46 5.4.3 CLEO-I S4 ........................................................................................................ 49 5.4.4 CLEO-E ............................................................................................................ 50 5.5 V Budget ............................................................................................................... 51 6 SYSTEMS ............................................................................................. 53 6.1 Mission and System Requirements and Design Drivers ....................................... 53 6.1.1 General ............................................................................................................. 53 6.1.2 CLEO/I ............................................................................................................. 55 6.1.3 CLEO/E ............................................................................................................ 55 6.1.4 Design Drivers .................................................................................................. 56 6.2 System Assumptions and Trade-Offs .................................................................... 58 6.2.1 Assumptions ..................................................................................................... 58 6.2.2 Trade-Offs ........................................................................................................ 59 6.3 Mission System Architecture ................................................................................. 62 6.3.1 Concept of Operations ..................................................................................... 62 6.3.2 Mission Timeline ............................................................................................. 62 6.3.3 Mission Timeline Assumptions ....................................................................... 63 6.3.4 Data Volume Download Capability (SCI+HK TM) ......................................... 64 6.4 System Baseline Design.........................................................................................
Recommended publications
  • The Messenger
    10th anniversary of VLT First Light The Messenger The ground layer seeing on Paranal HAWK-I Science Verification The emission nebula around Antares No. 132 – June 2008 –June 132 No. The Organisation The Perfect Machine Tim de Zeeuw a ground­based spectroscopic comple­ thousand each semester, 800 of which (ESO Director General) ment to the Hubble Space Telescope. are for Paranal. The User Portal has Italy and Switzerland had joined ESO in about 4 000 registered users and 1981, enabling the construction of the the archive contains 74 TB of data and This issue of the Messenger marks the 3.5­m New Technology Telescope with advanced data products. tenth anniversary of first light of the Very pioneering advances in active optics, Large Telescope. It is an excellent occa­ crucial for the next step: the construction sion to look at the broader implications of the Very Large Telescope, which Winning strategy of the VLT’s success and to consider the received the green light from Council in next steps. 1987 and was built on Cerro Paranal in The VLT opened for business some five the Atacama desert between Antofagasta years after the Keck telescopes, but the and Taltal in Northern Chile. The 8.1­m decision to take the time to build a fully Mission Gemini telescopes and the 8.3­m Subaru integrated system, consisting of four telescope were constructed on a similar 8.2­m telescopes and providing a dozen ESO’s mission is to enable scientific dis­ time scale, while the Large Binocular Tele­ foci for a carefully thought­out comple­ coveries by constructing and operating scope and the Gran Telescopio Canarias ment of instruments together with four powerful observational facilities that are now starting operations.
    [Show full text]
  • 2020 Technology and Research Initiative Fund Annual Report
    FISCAL YEAR 2020 TECHNOLOGY AND RESEARCH INITIATIVE FUND ABOUT THIS REPORT The fiscal year 2020 Arizona Board of Regents Technology and Research Initiative Fund filed in accordance with A.R.S. §15-1648(D) includes the prior year’s TRIF expenditures. The board adopted TRIF five-year project plans, available on the ABOR website, detailing anticipated budgets and expected outcomes. TRIF was established through Proposition 301 that increased the state’s sales tax to be dedicated to K-12, community colleges and Arizona’s public universities. Collection of the tax began on June 1, 2001, and the proposition was extended for another 20 years in 2018. Arizona law establishes TRIF using Proposition 301 sales tax revenue and gives the Arizona Board of Regents the responsibility to administer the fund. TRIF monies are continuously appropriated to ABOR and do not lapse at the end of the fiscal year. The fiscal year 2020 TRIF report details research goals, accomplishments and highlights from the universities that address challenges to the state and society as well as detailed financial information on how the funds were utilized. Through TRIF funds, the institutions are able to accomplish advances in vital research, including COVID-19 research, virus biotech detection, water resources and more. ABOUT THE ARIZONA BOARD OF REGENTS The Arizona Board of Regents is committed to ensuring access for qualified residents of Arizona to undergraduate and graduate institutions; promoting the discovery, application, and dissemination of new knowledge; extending the benefits of university activities to Arizona’s citizens outside the university; and maximizing the benefits derived from the state’s investment in education.
    [Show full text]
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • Gnc 2021 Abstract Book
    GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering
    [Show full text]
  • Real-Time On-Orbit Calibration of Angles Between Star Sensor and Earth Observation Camera for Optical Surveying and Mapping Satellites
    ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands REAL-TIME ON-ORBIT CALIBRATION OF ANGLES BETWEEN STAR SENSOR AND EARTH OBSERVATION CAMERA FOR OPTICAL SURVEYING AND MAPPING SATELLITES Wei Liu 1*, Hui Wang 2, Weijiao Jiang 2, Fangming Qian 3, Leiming Zhu 4 1 Xi’an Research Institute of Surveying and Mapping, No.1 Middle Yanta Road, Xi’an, China - [email protected] 2 State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China - [email protected] 2 State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China - [email protected] 3 Information Engineering University, Zhengzhou, China - [email protected] 4 Centre of TH-Satellite of China, Beijing, China - [email protected] Commission I, WG I/4 KEY WORDS: Star Sensor, Attitude Measurement, Error Analysis, On-Orbit Calibration, Angle between Cameras, On-orbit Monitoring Device ABSTRACT: On space remote sensing stereo mapping field, the angle variation between the star sensor’s optical axis and the earth observation camera’s optical axis on-orbit affects the positioning accuracy, when optical mapping is without ground control points (GCPs). This work analyses the formation factors and elimination methods for both the star sensor’s error and the angles error between the star sensor’s optical axis and the earth observation camera’s optical axis. Based on that, to improve the low attitude stability and long calibration time necessary of current satellite cameras, a method is then proposed for real-time on-orbit calibration of the angles between star sensor’s optical axis and the earth observation camera’s optical axis based on the principle of auto-collimation.
    [Show full text]
  • Space Policy Directive 1 New Shepard Flies Again 5
    BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S.
    [Show full text]
  • Outstanding Expertise at the Service of Your Ambitions
    OUTSTANDING EXPERTISE AT THE SERVICE OF YOUR AMBITIONS #enablingyourambitions MILLION TURNOVER IN 2017 ambitions your EMPLOYEES INCLUDING ING 60% ENGINEERS OUR GOAL: L 70+ TO COMBINE‘‘ ENAB TECHNOLOGICAL EXCELLENCE AND 360 COMPETITIVENESS SODERN TO TRANSFORM OUR CUSTOMERS’ AMBITIONS 2 INTO REALITIES.‘‘ OUR DNA Franck Poirrier, CEO of Sodern We rely on more than 50 years of experience sharehoLDers: ArianeGroUP (90%) in optronics and neutron technology AND CEA (10%) 16600 to develop innovative and competitive solutions for our commercial and institutional customers. M2 OF FACILITIES 2 KEY AREAS As a subsidiary of the We preserve and enhance To meet the expectations of OF KNOW-HOW: European leader in access this exceptional technological changing markets, we set high OPTRONIC, to space, ArianeGroup, know-how by participating in competitive requirements for NEUtron we are operationally scientific programs that push ourselves: the implementation technoLOGY independent. the limits of the state of the of lean management, perfect art: the caesium atom clock understanding of our We are also a historical and Pharao, the seismometer of customers’ needs, agility and strategic defence supplier, a the Mars mission InSight, cells optimisation of production characteristic that guarantees of Pockels for the Megajoule costs are the commitments us a solid base of industrial laser, etc. that allow us to maintain a activities, thereby affirming competitive edge with a very durability and reliability. Sodern’s core business is the high level of customer Our institutional clients’ high series production of star satisfaction, and to consolidate level of requirements has led trackers that enable satellites our position as a world leader us to develop an extraordinary to orient themselves precisely in in several markets.
    [Show full text]
  • A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
    Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering).
    [Show full text]
  • Io Volcano Observer
    EPSC Abstracts Vol. 13, EPSC-DPS2019-996-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Follow the Heat: Io Volcano Observer A. S. McEwen1, E. Turtle2, L. Kestay3, K. Khurana4, J. Westlake2, P. Wurz5, J. Helbert6, R. Park7, M. Bland3, D. Breuer6, L. Carter1, A. G. Davies7, C. W. Hamilton1, S. Horst8, X. Jia9, L. Jozwiak2, J. T. Keane10, K. de Kleer10, V. Lainey7, K. Mandt2, I. Matsuyama1, O. Mousis11, F. Nimmo12, C. Paranicas2, J. Perry1, A. Pommier13, J. Radebaugh14, J. Spencer15, S. Sutton1, N. Thomas5, A. Vorburger5 1LPL, University of Arizona, 2JHU APL, 3USGS, 4UCLA, 5UBE, 6DLR, 7JPL, 8JHU, 9U.Michigan, 10Caltech, 11AMU, 12UCSC, 13UCSD, 14BYU, 15SwRI. Abstract A promising avenue to address these questions is a new spacecraft mission making multiple close flybys The Io Volcano Observer (IVO) Discovery mission of Io, combined with research and analysis motivated proposal [1] has been re-focused in 2019 towards by the mission. IVO will address all of these understanding tidal heating as a fundamental questions, while still within the constraints of NASA planetary process. To “Follow the Heat”, IVO will Discovery program. IVO will characterize volcanic determine how heat is generated in Io’s interior, processes (Q1); test interior models via a set of transported to the surface, and how heat and mass are geophysical measurements (coupled with laboratory lost to space. experiments and theory; Q2 and Q3); measure the total heat flow and orbital evolution of Io (Q4); and 1. Tidal Heating analyze mass loss processes (Q5). No new technologies are required for this mission, which Tidal heating is key to the evolution and habitability leverages advances in radiation design and solar of many worlds across our Solar System and beyond.
    [Show full text]
  • Stardust Sample Return
    National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey
    [Show full text]
  • Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions
    NASA/TM—2015-218885 Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions Anthony J. Colozza Vantage Partners, LLC, Brook Park, Ohio Robert L. Cataldo Glenn Research Center, Cleveland, Ohio October 2015 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]
  • IASI: a Review of Instrument Performance and Characterizations
    IASI: a Review of Instrument Performance and Characterizations D. Siméonia, D. Blumsteinb, P. Astruca, C. Degrellea, B. Chetritea, B. Tournierd, G. Chalonb, T. Carlierb, G. Kayalc a ALCATEL SPACE -10 Bd du Midi BP99-06156 Cannes La Bocca Cedex - France, b CNES - 18 avenue Edouard Belin – 31401 Toulouse Cedex 9 – France c EUMETSAT – Am Kavalleriesant 31, D-64295 Darmstadt – Germany d NOVELTIS-Parc Tech du Canal – 2, av. de l’Europe – 31526 Ramonville St Agne Cedex-France Corporate Communications IASI Payload of the European Meteorological Polar-Orbit Satellites METOP Mains missions: weather predictions and climate studies. Program led by the French National Space Agency CNES in association with the European Meteorological Satellite Organization EUMETSAT. Prime Contractor: Thales Alenia Space Dimensions of sounder : 1.1x1.1x1.2 m3 Mass sounder < 200 Kg Stiffness > 55Hz during launch Power consumption < 200 Watt Reliability > 0.8 Availability > 97.5 % over 5 years 2 All rights reserved © 2007, Thales Alenia Space IASI Payload of the European Meteorological Polar-Orbit Satellites METOP Mains missions: weather predictions and climate studies. Program led by the French National Space Agency CNES in association with the European Meteorological Satellite Organization EUMETSAT. Prime Contractor: Thales Alenia Space Dimensions of sounder : 1.1x1.1x1.2 m3 Mass sounder < 200 Kg Stiffness > 55Hz during launch Power consumption < 200 Watt Reliability > 0.8 Availability > 97.5 % over 5 years Status : - EM delivered in Dec 2001 - PFM delivered in July
    [Show full text]