Cure Et Al 14 MEPS

Total Page:16

File Type:pdf, Size:1020Kb

Cure Et Al 14 MEPS This authors' personal copy may not be publicly or systematically copied or distributed, or posted on the Open Web, except with written permission of the copyright holder(s). It may be distributed to interested individuals on request. Vol. 506: 243–253, 2014 MARINE ECOLOGY PROGRESS SERIES Published June 23 doi: 10.3354/meps10789 Mar Ecol Prog Ser Habitat plasticity in native Pacific red lionfish Pterois volitans facilitates successful invasion of the Atlantic Katherine Cure1,4,*, Jennifer L. McIlwain1,2, Mark A. Hixon3 1The Marine Laboratory, University of Guam, Mangilao, Guam 96923, USA 2Department of Environment and Agriculture, Curtin University, Perth, WA 6845, Australia 3Department of Biology, University of Hawai‘i at Ma-noa, Honolulu, HI 96822, USA 4Present address: School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia ABSTRACT: Red lionfish were transported outside their native Pacific range to supply aquaria, subsequently escaped or were released, and have established breeding populations in Atlantic reefs. This invasion has negatively affected coral reef fishes, reducing recruitment success through predation. To provide insight into the factors explaining invasion success, we examined the distribution and abundance of native lionfish in 2 regions of the Western Pacific (Marianas and Philippines). Densities of lionfish and other predatory coral reef fishes were evaluated via strati- fied surveys targeting habitat preferred by lionfish. There were considerable regional differences in species composition of lionfishes in general and density of Pterois volitans in particular. Red lionfish were uncommon on Guam (3.5 fish ha−1) but 6 times more abundant in the Philippines (21.9 fish ha−1). Densities in both regions were an order of magnitude less than reported in the invaded Atlantic. There was no relationship between density of lionfish and that of other reef predators, including groupers. Both native populations of P. volitans were more common on reef- associated habitats (sandy slopes, reef channels, and artificial reefs) than on coral reefs. On Guam, P. volitans was more abundant in areas of low water visibility (reef channels and river mouths) compared to reefs with high water clarity. Lionfish in their native range are habitat generalists that occupy various environments, including areas with low salinity and high sediment loads. This plasticity in habitat use helps explain invasive success, given that ecological generalization is recognized as a major factor accounting for the successful establishment of invasive species. KEY WORDS: Lionfish distribution · Native density · Habitat use · Invasion success · Western Pacific Resale or republication not permitted without written consent of the publisher INTRODUCTION habitats with low native biodiversity (Vila-Gispert et al. 2005, Duggan et al. 2006). Invasions are also usu- Many species have intentionally and unintention- ally accompanied by the invasive species being facil- ally been delivered into new ecosystems, where they itated by ecological release from predation, competi- have the possibility to establish viable populations tion, or parasite infestation in its native range (Pimentel et al. 2000). Successful invasions most (Williamson 1997, Mack et al. 2000, Crooks & Rilov often involve species with a generalist diet and high 2009). Once established, invasive species can cause tolerance to diverse environmental conditions, espe- negative economic and ecological impacts (Grosholz cially when they have been introduced to degraded 2002, Clavero & Garcia-Berthou 2005), such as spe- *Corresponding author: [email protected] © Inter-Research 2014 · www.int-res.com 244 Mar Ecol Prog Ser 506: 243–253, 2014 cies replacements, loss of diversity, and alterations of MATERIALS AND METHODS community and ecosystem structure and function copy (Fritts & Rodda 1998, Semmens et al. 2004, Dierking Survey methods et al. 2009). Introduced to the Western Atlantic in the vicinity of Lionfish density and distribution were estimated at Florida via the aquarium trade, Pacific red lionfish 23 sites on Guam and 24 sites in the Philippines using Author Pterois volitans and its congener P. miles reached stratified surveys that mainly targeted habitat pre- reproductive population densities during the 1990s ferred by lionfish (Fig. 1). Sites were chosen based on (Semmens et al. 2004, Meister et al. 2005, Freshwater either preliminary surveys which indicated lionfish et al. 2009) and are now distributed in tropical and presence or local reports of the occurrence of lionfish subtropical coastal environments throughout the in a particular area. Each transect covered an area Western Atlantic, Gulf of Mexico, and Caribbean approximately 5000 m2 (500 × 10 m). Transect width (Schofield 2010), despite local attempts at manual was always 10 m, but specific transect length was removal. The dramatic increase in lionfish density variable and determined by a towed GPS attached to since their introduction (Green & Côté 2008, Morris a float. Therefore, transect area was variable and et al. 2009, Albins & Hixon 2013) has raised consider- individually estimated for each transect. Surveys at able concern over the ecological and economic dam- all sites were undertaken at 5 to 15 m depth, each age to coral reef fish communities in the region. Lion- along one particular habitat type (i.e. reef slope, reef fish have caused substantial reductions in the channel, sandy slope), to evaluate potential differ- abundance of newly settled coral reef fishes (Albins ences among habitats. Long transects were chosen & Hixon 2008, Albins 2013) and may compete with to increase the probability of encounter, as lionfish native fishery species, such as small grouper (Albins are uncommon (Kulbicki et al. 2012) and have patchy 2013). distributions, such that traditional visual census Red lionfish feed on a variety of small fishes and methods shorter in length (e.g. 50 m) tend to under- crustaceans (Harmelin-Vivien & Bouchon 1976, estimate abundance (Brock 1982, Jones et al. 2006, Myers 1999, Albins & Hixon 2008, Morris & Akins Green et al. 2013). These methods were chosen to 2009) and are the only piscivorous species of mirror those used by re searchers in the invaded lionfish (Myers 1999). They have few identified range (Whitfield et al. 2007, Green & Côte 2008) to predators in both their native and invaded range, ensure robust comparisons between native and inva- presumably because of the protection provided by sive populations. Counts along transects were per- multiple venomous spines (Allen & Eschmeyer 1973, formed by 2 divers (5 m belt transect each) swimming Bernadsky & Goulet 1991, Maljkovic & Van Leeu- side by side. As lionfish are cryptic in nature, the wen 2008). Published records on parasite loads of divers made systematic searches of reef holes and lionfish are scarce but suggest low parasite loads in overhangs within the transect boundary to maximize the invaded range (Ruiz-Carus et al. 2006, Bullard accuracy in lionfish abundance estimates (Morris et al. 2011). Such characteristics of red lionfish et al. 2009). This modification of the usual visual make it an ideal species for establishing viable pop- census method follows recent recommendations ulations in new environments (Albins & Hixon 2013, for accurate assessment of lionfish density (Green Côté et al. 2013). et al. 2013). Density estimates (number per transect Understanding the underlying processes which area) were converted to number per hectare to shape the distribution and abundance of lionfish in allow comparison with published estimates of lion- their native range may provide further insight into fish density for both the invaded and native ranges the causes of their successful invasion of the At - (Whitfield et al. 2007, Green & Côté 2008, Grubich et lantic. By examining distribution patterns and lion- al. 2009, Kulbicki et al. 2012). Body size as total fish density at 2 locations in the Western Pacific, length (TL) to the nearest centimeter was estimated together with a series of environmental correlates, for every individual encountered. All surveys were we assessed some of the underlying environmental conducted during the morning (be tween 06:00 and and habitat-associated factors which could be 11:00 h), which previous observations showed as the responsible for the observed low densities of lionfish optimal time for ‘encountering’ lionfish because of in their native range (Kulbicki et al. 2012) compared their heightened foraging activity during this time to those reported for the invaded range (e.g. North (Cure et al. 2012). Surveys were conducted during Carolina: Whitfield et al. 2007, Bahamas: Green & April to June 2010 on Guam and June to July 2010 in Côté 2008). the Philippines. Cure et al.: Habitat plasticity in native lionfish 245 a bc copy Author Panglao Marianas Negros Philippines d e Fig. 1. General regions of lionfish survey sites (a) in the Philippines and Marianas and (b) in the central Philippines. Specific locations of lionfish survey sites at (c) the island of Guam (n = 23), and (d) Negros and (e) Panglao in the Philippines (n = 24). PPB and BBC: names given to local dive sites. Sites were classified as either reef slope (black circles) or non-reef slope (grey triangles). Transects per site varied from 1 to 4 on Guam and from 1 to 2 in the Philippines To investigate potential correlations between lion- Furthermore, abundances of other predators that fish and environmental characteristics, 10 environ-
Recommended publications
  • ABSTRACT MORRIS, JAMES ADIEL, JR. The
    ABSTRACT MORRIS, JAMES ADIEL, JR. The Biology and Ecology of the Invasive Indo-Pacific Lionfish. (Under the direction of James A. Rice and John J. Govoni.) The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of lionfish biology and ecology including: invasion chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and control and management. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To characterize the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish females mature at approximately 170 mm total length and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish were largely avoided as prey suggesting that predation mortality by serranids will not likely be a significant source of mortality for lionfish populations.
    [Show full text]
  • New Records of Coral Reef Fishes from Andaman and Nicobar Islands 179 ISSN 0375-1511
    RAJAN and SREERAJ : New records of coral reef fishes from Andaman and Nicobar Islands 179 ISSN 0375-1511 Rec. zool. Surv. India : 115(Part-2) : 179-189, 2015 NEW RECORDS OF CORAL REEF FISHES FROM ANDAMAN AND NICOBAR ISLANDS PT RAJAN AND CR SREERAJ Zoological Survey of India, Andaman and Nicobar Regional Centre, Port Blair-744102 Email: [email protected] INTRODUCTION 2003a, 2003b, 2007), Rao et al. (1992, 1992a, Andaman Nicobar Islands situated in the Bay 1992b, 1994, 1993a, 1993b, 1997, 2000), Rao of Bengal between 6o45´-13 45´N and 92o10´- (2003, 2009), Rao and Kamla Devi (1996, 1997a, 94o15´E, consist of 352 islands 220 islets and 1997b, 1998, 2004), Soundararajan and Dam Roy rock and cover a distance of almost 470 km over (2004), Remadevi et al. (2010) Rajaram et al. North South, with a coastline of 1962 km, and (2007), Ramakrishna et al., 2010. Smith-Vaniz, bring in for India an Exclusive Economic Zone 2011, Smith-Vaniz & Allen (2012) and Rajan and (EEZ) of 600 thousand sq km. The coast is under Sreeraj (2014). the influence of a diverse set of oceanographical MATERIALS AND METHODS and ecological conditions. The shelf topography The new records of fishes were made by field of these islands show frequent rises supporting surveys and underwater observations in the coral coral reefs, which are characterized as fringing reef ecosystem of Havelock Island, near Light reefs on the eastern side and barrier reefs off west House, 12, 02,765N / 92, 57,923 E. Fringing reef coast; the depressions are known as passages and following the contour of the land, depth from straits.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • National Invasive Lionfish Prevention and Management Plan
    5/5/2014 National Invasive Lionfish Prevention and Management Plan PREPARED BY: INVASIVE LIONFISH CONTROL AD-HOC COMMITTEE OF THE AQUATIC NUISANCE SPECIES TASK FORCE ABBREVIATIONS LIST ANS – Aquatic Nuisance Species ANSTF – Aquatic Nuisance Species Task Force EDRR – Early Detection and Rapid Response FWC – Florida Fish and Wildlife Conservation Commission FKNMS – Florida Keys National Marine Sanctuary GSARP – Gulf and South Atlantic Regional Panel GSMFC – Gulf States Marine Fisheries Commission NAS – Non-Native Aquatic Species NGOs – Non-Governmental Organization PLAN – National Invasive Lionfish Prevention and Management Plan NISA – National Invasive Species Act of 1996 NMFS – National Marine Fisheries Service NOAA – National Oceanic and Atmospheric Administration NPS – National Park Service REEF – Reef Environmental Education Foundation USFWS – U.S. Fish and Wildlife Service USGS – U.S. Geological Survey TABLE OF CONTENTS EXECUTIVE SUMMARY ...................................................................................................................................... I COMMITTEE MEMBER LIST ........................................................................................................................... II LIST OF FIGURES ............................................................................................................................................... III LIST OF TABLES ................................................................................................................................................
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • A Vector Analysis of Marine Ornamental Species in California
    Management of Biological Invasions (2015) Volume 6, Issue 1: 13–29 doi: http://dx.doi.org/10.3391/mbi.2015.6.1.02 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article A vector analysis of marine ornamental species in California Susan L. Williams1*, R. Eliot Crafton2, Rachel E. Fontana1,2,3, Edwin D. Grosholz4, Grace Ha1,2, Jae R. Pasari1 and Chela J. Zabin4,5 1Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, PO Box 247, Bodega Bay, CA 94923 USA 2Graduate Group in Ecology, University of California at Davis, Davis, CA 95616 USA 3Present address: Office of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910 USA 4Department of Environmental Science and Policy, University of California at Davis, Davis, CA 95616 USA 5Smithsonian Environmental Research Center, Tiburon, CA 94920 USA E-mail: [email protected] (SLW), [email protected] (REC), [email protected] (REF), [email protected] (EDG), [email protected] (GH), [email protected] (JRP), [email protected] (CJZ) *Corresponding author Received: 9 July 2014 / Accepted: 28 October 2014 / Published online: 10 December 2014 Handling editor: Alisha Davidson Abstract The trade in marine and estuarine ornamental species has resulted in the introductions of some of the world’s worst invasive species, including the seaweed Caulerpa taxifolia and the lionfish Pterois volitans. We conducted an analysis of the historical introductions and establishments of marine and estuarine ornamental species in California using a database (‘NEMESIS’) and the contemporary fluxes (quantities, taxa) based on government records, direct observations of aquarium-bound shipments, and internet commerce.
    [Show full text]
  • Marine Biodiversity in India
    MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity.
    [Show full text]
  • Record of Abundance, Spatial Distribution and Gregarious Behavior of Invasive
    Abundance of lionfish in Banco Chinchorro, Mexico 1 Short communication 2 3 Record of abundance, spatial distribution and gregarious behavior of invasive 4 lionfish Pterois spp. (Scorpaeniformes: Scorpaenidae) in coral reefs of Banco 5 Chinchorro Biosphere Reserve, southeast Mexico 6 7 ABSTRACT. The lionfish (Pterois volitans/ P. miles) is the first known species of marine fish to 8 invade the Caribbean and Gulf of Mexico, and it is threatening the biodiversity of the region´s coral 9 reefs. Its success as an invasive species is due to its high predation and fertility, fast growth and lack of 10 predators. Its first record in Mexico was in 2009. To estimate their abundance, 22 sites were monitored 11 around the reef of Banco Chinchorro Biosphere Reserve (BCBR) during 2013. Densities from 0 to 333 12 ind ha-1 (97.6 ± 140.2 ind ha-1) and biomasses from 0 to 58.7 kg ha-1 (18.2 ± 29.9 kg ha-1) were 13 recorded, the highest so far in the Mexican Caribbean. In addition, two lionfish distribution zones were 14 detected: Leeward reef (LR) and Windward reef (WR). LR was 4.6 and 3.9 times higher in density and 15 biomass, respectively, than WR. The sizes found in the monitoring ranged from 5 to 40 cm of total 16 length. Finally, a gregarious behavior was observed in 47.5% of the recorded fish. Our results suggest 17 that, to prevent the development of large reservoirs of lionfish in the BCBR, management and control 18 actions in areas of high lionfish abundance should be prioritized.
    [Show full text]
  • Прайс Bali Fish 10.07.19
    ООО"Арчер-Фиш" www.archer-fish.ru BaliFish Морские рыбки и б/п животные Оптовый Прайс-лист от 10.07.2019 Поставка морских рыб и б/п животных осуществляется со специализированной рыбной фермы на о.Бали Заказ "с поставки" возможен на условии транзита, самовывоза или последующей отправки из Мелкооптовые цены на рыб после карантина (10-14 дней), действуют при условии заказа на сумму, не менее 20000 руб. на условиях предзаказа и предоплаты. Позиции, по которым не указан размер, поставляются в размере, соответствующем среднему размеру указанного вида. Код Латинское название Коммерческое название Размер Морские рыбки ANTHIAS CORAL FISH (СКАЗОЧНЫЕ ОКУНЬКИ) CI - 70001 Pseudanthias Squamipinnis Jewel Antenna Basslet (Red) M CI - 70002 Mirolabrichthys Tuka Purple Queen Male L CI - 70003 Pseudanthias Hutchi Red Cheeked Antenna Basslet (Green) M CI - 70004 Mirolabrichthys Dispar Madder Seaperch M CI - 70005 Pseudanthias Pleurotaenia Purple Blotch Basslet (female) L/XL CI - 70006 Pseudanthias Hutchii Ordinary Basslet M CI - 70007 Pseudanthias Fasciatus Banded Fairy Basslet L/XL CI - 70008 Pseudanthias Kashiwae Red Fairy Basslet M CI - 70009 Pseudanthias Carberry Threadfin Goldie ML CI - 70010 Mirolabrichthys Ignitus Flame Basslet ML CI - 70011 Pseudanthias Pleurotaenia Purple Blotch Basslet (male) L/XL CI - 70012 Pseudanthias Truncatus Truncate Fairy Basslet M CI - 70013 Pseudanthias Bimaculatus Sunburst Basslet M CI - 70014 Mirolabrichthys Evansi Yellowtail Goldie M CI - 70015 Mirolabrichthys Tuka Purple Queen Female SM CI - 70016 Pseudanthias Rubrizonatus
    [Show full text]
  • EN Himantura Chaophraya
    First published : November 2005 by Office of Natural Resources and Environmental Policy and Planning (ONEP), Thailand. ISBN : 974–9929–87–X This publication is financially supported by ONEP and may be reproduced in whole or in part and in any form for educational or non–profit purposes without special permission from ONEP, providing that acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purposes. Citation : Vidthayanon C., 2005. Thailand Red Data : Fishes. Office of Natural Resources and Environmental Policy and Planning, Bangkok, Thailand. 108 p. Author : Chavalit Vidthayanon (D. Sc.) Education : D. Sc. of Aquatic Bioscience Tokyo University of Fisheries Position : Senior Freshwater Specialist WWF Thailand Field of Work : l Research for supporting participatory conservation of wetlands in the Mekong basin and northern Thailand. l 15 years’ experience developing and researching aquatic biodiversity, both marine and freshwater. Available from : Biological Diversity Division Office of Natural Resources and Environmental Policy and Planning Ministry of Natural Resources and Environment 60/1 Rama VI Rd. Bangkok 10400 THAILAND Telephone (66) 2265 6638–39 Facsimile (66) 2265 6638 Website: http://chm-thai.onep.go.th E-mail: [email protected] Designed & Printed : Integrated Promotion Technology Co., Ltd. Telephone (66) 2585 2076, 2586 0837 Facsimile (66) 2913 7763 2 1. Mae Hong Son 20. Nakhon Sawan 39. Udon Thani 58. Chachoengsao 2. Chiang Mai 21. Uthai Thani 40. Sakon Nakhon 59. Chon Buri 3. Chiang Rai 22. Chai Nat 41. Nong Khai 60. Rayong 4. Lamphun 23. Suphan Buri 42. Nakhon Phanom 61.
    [Show full text]
  • Marine and Estuarine Fish Fauna of Tamil Nadu, India
    Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(4): 231-271 Article Marine and estuarine fish fauna of Tamil Nadu, India 1,2 3 1 1 H.S. Mogalekar , J. Canciyal , D.S. Patadia , C. Sudhan 1Fisheries College and Research Institute, Thoothukudi - 628 008, Tamil Nadu, India 2College of Fisheries, Dholi, Muzaffarpur - 843 121, Bihar, India 3Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120, West Bengal, India E-mail: [email protected] Received 20 June 2018; Accepted 25 July 2018; Published 1 December 2018 Abstract Varied marine and estuarine ecosystems of Tamil Nadu endowed with diverse fish fauna. A total of 1656 fish species under two classes, 40 orders, 191 families and 683 geranra reported from marine and estuarine waters of Tamil Nadu. In the checklist, 1075 fish species were primary marine water and remaining 581 species were diadromus. In total, 128 species were reported under class Elasmobranchii (11 orders, 36 families and 70 genera) and 1528 species under class Actinopterygii (29 orders, 155 families and 613 genera). The top five order with diverse species composition were Perciformes (932 species; 56.29% of the total fauna), Tetraodontiformes (99 species), Pleuronectiforms (77 species), Clupeiformes (72 species) and Scorpaeniformes (69 species). At the family level, the Gobiidae has the greatest number of species (86 species), followed by the Carangidae (65 species), Labridae (64 species) and Serranidae (63 species). Fishery status assessment revealed existence of 1029 species worth for capture fishery, 425 species worth for aquarium fishery, 84 species worth for culture fishery, 242 species worth for sport fishery and 60 species worth for bait fishery.
    [Show full text]
  • Bourmaud, 2003
    Museum d’Histoire Naturelle INVENTAIRE DE LA BIODIVERSITE MARINE RECIFALE A LA REUNION Chloé BOURMAUD Octobre 2003 Maître d’ouvrage : Association Parc Marin de la Réunion Maître d’œuvre : Laboratoire d’Ecologie Marine, ECOMAR Financement : Conseil Régional 1 SOMMAIRE Introduction ……………………………………………………………………………………3 PHASE I : DIAGNOSTIC ....................................................................................................... 5 I. Méthodologie ...................................................................................................................... 6 1. Scientifiques impliqués dans l’étude.............................................................................. 6 1.1. EXPERTS LOCAUX RENCONTRES................................................................... 6 1.2. EXPERTS HORS DEPARTEMENT CONTACTES ............................................. 6 2. Harmonisation des données............................................................................................ 6 2.1. LES SITES ET SECTEURS DU RECIF ................................................................ 7 2.2. LES UNITES GEOMORPHOLOGIQUES DU RECIF ......................................... 8 2.3. LE DEGRE DE VALIDITE DES ESPECES ......................................................... 8 2.4. LE NIVEAU D’ABONDANCE ............................................................................. 9 2.5. LES GROUPES TAXONOMIQUES ................................................................... 10 3. Conception d'un modèle de base de données ..............................................................
    [Show full text]