Wasl Is Crucial to Maintain Microglial Core Activities During Glioblastoma Initiation Stages

Total Page:16

File Type:pdf, Size:1020Kb

Wasl Is Crucial to Maintain Microglial Core Activities During Glioblastoma Initiation Stages bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440597; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Wasl is crucial to maintain microglial core activities during 2 glioblastoma initiation stages. 3 4 Julie Mazzolini 1*, Sigrid Le Clerc 2, Gregoire Morisse 1, Cédric Coulonges 2, Jean- 5 François Zagury 2 and Dirk Sieger 1* 6 7 1 Centre for Discovery Brain Sciences, University of EdinburgH, 49 Little France 8 Crescent, EdinburgH EH16 4SB, UK 9 2 Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM 10 Université, Paris, France. 11 12 13 * Correspondence: 14 Julie Mazzolini 15 Centre for Discovery Brain Sciences, 49 Little France Crescent, EdinburgH EH16 4SB, 16 UK, Tel: +441312429411, mail: [email protected] 17 Dirk Sieger 18 Centre for Discovery Brain Sciences, 49 Little France Crescent, EdinburgH EH16 4SB, 19 UK, Tel: +441312426161, mail: [email protected] 20 21 Lead contact: Dirk Sieger, [email protected] 22 23 Keywords 24 Microglia; glioblastoma; wasl; RNA sequencing; morpHology; cytoskeleton; 25 pHagocytosis 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440597; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Summary 28 Microglia actively promote tHe growtH of high-grade gliomas. WitHin tHe glioma 29 microenvironment an activated (amoeboid) microglial morpHology Has been observed, 30 However tHe underlying causes and tHe related impact on microglia functions and tHeir 31 tumour promoting activities is unclear. Using tHe advantages of the larval zebrafish 32 model, we demonstrate tHat pre-neoplastic glioma cells Have an immediate impact on 33 microglial morpHology and functions. Overexpression of Human HRasV12 in 34 proliferating domains of the larval brain induces an amoeboid morpHology of microglia, 35 increases microglial numbers and decreases their motility and pHagocytic activity. 36 RNA sequencing analysis revealed lower expression levels of tHe actin nucleation 37 promoting factor wasla in microglia. Importantly, a microglia specific rescue of wasla 38 expression restores microglial morpHology and functions. THis results in increased 39 pHagocytosis of pre-neoplastic cells and slows down tumour progression. In 40 conclusion, we identified a mechanism tHat de-activates core microglial functions 41 witHin tHe emerging glioma microenvironment. 42 43 Introduction 44 45 HigH grade gliomas represent a complex and devastating disease and are posing an 46 unmet clinical need. THese tumours resist multi-modal tHerapies and survival times 47 are only 14 montHs on average (Gregory et al., 2020; Kadiyala et al., 2019; Lucki et 48 al., 2019; Wen and Kesari, 2008). In recent years a lot of focus Has been on tHe 49 complex microenvironment of gliomas. Microglia and infiltrating macropHages are tHe 50 most prominent cell types witHin tHe glioma microenvironment and can account for up 51 to 30-50% of tHe total tumour mass (for review see (Hambardzumyan et al., 2015; 52 Quail and Joyce, 2017). Instructed by a variety of chemokines and cytokines microglia 53 actively promote tumour growtH by affecting processes such as cell proliferation and 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440597; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 54 invasiveness, extracellular matrix modifications, angiogenesis and tHe formation of an 55 immunosuppressive environment (Ellert-Miklaszewska et al., 2013; Hambardzumyan 56 et al., 2015; KomoHara et al., 2008; Markovic et al., 2005; Pyonteck et al., 2013; Wang 57 et al., 2013; Wu et al., 2010; Zhai et al., 2011; Zhang et al., 2012). WHile tHese 58 processes Have been described in gliomas, surprisingly little is known about tHe 59 apparent change of morpHology of microglia witHin tHe glioma and tHe possible impact 60 on tHeir functions. Microglia, as tHe resident innate immune cells of tHe brain, display 61 unique morpHological features. Under pHysiological conditions microglia are in a 62 surveillance mode and actively and continuously scan tHeir microenvironment using 63 dynamic large processes providing tHem a ramified morpHology (NimmerjaHn et al., 64 2005). However, once tHe Homeostasis is altered by injury or brain patHologies, 65 microglia retract tHeir processes to acquire an amoeboid shape and become 66 “activated”. THis activated state can correlate witH an eitHer anti- or pro-inflammatory 67 state of microglia (Bernier et al., 2019; Bolasco et al., 2018; CHia et al., 2018; 68 Karperien, 2013; Kettenmann et al., 2011; Lawson et al., 1992; Madry et al., 2018a, 69 2018b). Of note, an activated (amoeboid) microglial morpHology Has been observed 70 in-vivo across different glioma models at different stages of glioma growtH as well as 71 witHin Human glioma samples (Annovazzi et al., 2018; CHia et al., 2018; Juliano et al., 72 2018; Kvisten et al., 2019; Resende et al., 2016; Ricard et al., 2016). FurtHermore, 73 tHese activated microglia show a decreased pHagocytic activity and motility witHin the 74 central area of neoplastic lesions (Hutter et al., 2019; Jaiswal et al., 2009; Juliano et 75 al., 2018; Pyonteck et al., 2013; Wu et al., 2010). THe mechanisms underlying tHis 76 rapid and drastic morpHological remodelling are still not known. Clearly, tHese 77 morpHological pHenotypes must be HigHly regulated and involve adaptations to tHe 78 cellular cytoskeleton (Bernier et al., 2019; Okazaki et al., 2020). Cell morpHology, 79 pHagocytosis and motility are cellular processes known to be actin-dependent and are 80 crucial for tHe multitasking roles of microglia (Koizumi et al., 2007; Liu et al., 2020; 81 Lively and Schlichter, 2013; Okazaki et al., 2020; Pollard and Cooper, 2009; UHlemann 82 et al., 2015). An alteration of tHe microglial actin cytoskeleton and tHeir morpHology 83 will most likely affect several of tHese core functions. THerefore, it is important to 84 understand tHe impact of an activated microglial morpHology on tHeir functions witHin 85 tHe tumour microenvironment and its effects on tumour growtH. 86 Here, we investigated tHe influence of a pre-neoplastic glioma environment on 87 microglia morpHology and related functions. We utilised a recently published zebrafish 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440597; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 88 glioblastoma multiforme (GBM) model wHich is based on expression of tHe Human 89 oncogene HRasV12 in tHe proliferating domains of tHe developing brain and gives rise 90 to tumours similar to tHe mesenchymal subtype of Human GBM (Mayrhofer et al., 91 2017). Analysing larval stages of tHis zebrafish model allowed us to directly study tHe 92 influence of an early pre-neoplastic environment on tHe morpHology and functions of 93 microglia in vivo. Importantly, we detected an immediate impact of pre-neoplastic 94 HRasV12+ cells on tHe microglia population resulting in an activated pHenotype and 95 increased proliferation of tHe microglia. FurtHermore, tHeir pHagocytic activity, motility 96 and speed was significantly reduced compared to control microglia. RNA sequencing 97 of microglia revealed significantly lower expression levels of wasla, tHe zebrafish 98 ortHologue of Human WASP like actin nucleation promotion factor (WASL, also known 99 as N-WASP), a key regulator of actin cytoskeleton organization (Dart et al., 2012; 100 Linder et al., 1999; Lorenz et al., 2004; Park and Cox, 2009; Yamaguchi et al., 2005; 101 Yu et al., 2012). lmportantly, a microglia specific rescue of wasla expression in 102 HRasV12+ larvae restored microglial morpHology as well as tHeir number, speed and 103 motility. FurtHermore, the wasla rescue in microglia restored tHeir pHagocytic activity 104 wHich resulted in improvements in botH engulfment of pre-neoplastic cells and 105 survival. 106 107 Results 108 Pre-neoplastic cells affect the microglia population in the larval zebrafish brain 109 110 AltHougH an activated morpHology is a consistent feature of microglia witHin gliomas 111 and Has been described across models and species (CHia et al., 2018; Hutter et al., 112 2019; Kvisten et al., 2019; Ricard et al., 2016), tHe underlying causes and tHe timing 113 of tHe change in morpHology are not understood. 114 Here, we investigated tHe effect of pre-neoplastic cells on tHe microglia population 115 using a zebrafish GBM model (Mayrhofer et al., 2017). THis model is based on 116 overexpression of Human HRasV12 in tHe proliferating regions of tHe developing 117 central nervous system (CNS) and results in aggressive tumours resembling Human 118 mesenchymal GBM (Mayrhofer et al., 2017). To analyse pre-neoplastic stages, we 119 outcrossed tHe driver fish line Et(zic4:GAL4TA4,UAS:mCherry)hmz5 (Distel et al., 2009) 120 to the line Tg(UAS:eGFP-HRasV12)io006 (Santoriello et al., 2010) (hereafter 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440597; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Recommended publications
  • Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins.
    [Show full text]
  • Mouse Wipf1 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Wipf1 Knockout Project (CRISPR/Cas9) Objective: To create a Wipf1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Wipf1 gene (NCBI Reference Sequence: NM_153138 ; Ensembl: ENSMUSG00000075284 ) is located on Mouse chromosome 2. 8 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 8 (Transcript: ENSMUST00000094681). Exon 3~6 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous mutants have immunological abnormalities, although lymphocyte development appears normal. Mutants show abnormal B and T cell proliferative responses, high serum immunoglobulin levels and impaired immunological synapse formation. Exon 3 starts from about 3.52% of the coding region. Exon 3~6 covers 85.26% of the coding region. The size of effective KO region: ~9629 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 8 Legends Exon of mouse Wipf1 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis.
    [Show full text]
  • The Guanine Nucleotide Exchange Factor Arhgef5 Plays Crucial Roles in Src-Induced Podosome Formation
    1726 Research Article The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation Miho Kuroiwa, Chitose Oneyama, Shigeyuki Nada and Masato Okada* Department of Oncogene Research, Research institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan *Author for correspondence ([email protected]) Accepted 19 January 2011 Journal of Cell Science 124, 1726-1738 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.080291 Summary Podosomes and invadopodia are actin-rich membrane protrusions that play a crucial role in cell adhesion and migration, and extracellular matrix remodeling in normal and cancer cells. The formation of podosomes and invadopodia is promoted by upregulation of some oncogenic molecules and is closely related to the invasive potential of cancer cells. However, the molecular mechanisms underlying the podosome and invadopodium formation still remain unclear. Here, we show that a guanine nucleotide exchange factor (GEF) for Rho family GTPases (Arhgef5) is crucial for Src-induced podosome formation. Using an inducible system for Src activation, we found that Src-induced podosome formation depends upon the Src SH3 domain, and identified Arhgef5 as a Src SH3-binding protein. RNA interference (RNAi)-mediated depletion of Arhgef5 caused robust inhibition of Src-dependent podosome formation. Overexpression of Arhgef5 promoted actin stress fiber remodeling through activating RhoA, and the activation of RhoA or Cdc42 was required for Src-induced podosome formation. Arhgef5 was tyrosine-phosphorylated by Src and bound to Src to positively regulate its activity. Furthermore, the pleckstrin homology (PH) domain of Arhgef5 was required for podosome formation, and Arhgef5 formed a ternary complex with Src and phosphoinositide 3-kinase when Src and/or Arhgef5 were upregulated.
    [Show full text]
  • Microrna Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton
    cells Review MicroRNA Regulatory Pathways in the Control of the Actin–Myosin Cytoskeleton , , Karen Uray * y , Evelin Major and Beata Lontay * y Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; [email protected] * Correspondence: [email protected] (K.U.); [email protected] (B.L.); Tel.: +36-52-412345 (K.U. & B.L.) The authors contributed equally to the manuscript. y Received: 11 June 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin–myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin–myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin–myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis. Keywords: miRNA; actin; myosin; actin–myosin complex; Rho kinase; cancer; smooth muscle; hematopoiesis; stress fiber; gene expression; cardiovascular system; striated muscle; muscle cell differentiation; therapy 1. Introduction Actin–myosin interactions are the primary source of force generation in mammalian cells. Actin forms a cytoskeletal network and the myosin motor proteins pull actin filaments to produce contractile force. All eukaryotic cells contain an actin–myosin network inferring contractile properties to these cells.
    [Show full text]
  • WASL Knockout Hela Cell Lysate
    Leader in Biomolecular Solutions for Life Science WASL Knockout HeLa Cell Lysate Catalog No.: RM02299 Basic Information Background Catalog No. This gene encodes a member of the Wiskott-Aldrich syndrome (WAS) protein family. Wiskott- RM02299 Aldrich syndrome proteins share similar domain structure, and associate with a variety of signaling molecules to alter the actin cytoskeleton. The encoded protein is highly expressed Category in neural tissues, and interacts with several proteins involved in cytoskeletal organization, Cell Lysate including cell division control protein 42 (CDC42) and the actin-related protein-2/3 (ARP2/3) complex. The encoded protein may be involved in the formation of long actin microspikes, and in neurite extension. [provided by RefSeq, Jul 2013] Description WASL Knockout HeLa Cell Line is engineered from HeLa cell line with CRISPR/Cas9 technology. Allele-1:1bp insertion in exon1 Allele-2:4bp deletion in exon1 Gene Information Product Information Gene Symbol Parental Cell line Amount Genotype WASL HeLa 50μL, 2μg/μL. Heterozygous knockout Species Packaging Human 1 vial parental cell Lysate and 1 vial knockout cell Lysate Gene ID Shipping Conditions 8976 4℃ Swiss Prot Application O00401 Western Blot Synonyms Storage N-WASP, NWASP, WASPB Lysate is stable for 12 months when stored at -20℃. Minimizing freeze-thaw cycles. Protocol Contact To be used as WB control. Lysate is supplied in 1× SDS sample buffer (2% SDS, 60 mM Tris-HCl pH 6.8, 10% Glycerol, 0.02% Bromophenol blue, 60 mM beta-mercaptoethanol). 400-999-6126 Lysate should be boiled for 3 - 5 minutes before loading onto gel. [email protected] www.abclonal.com.cn Sequencing data Genome sequence analysis of PCR products from parental (WT) and WASL knockout (KO) HeLa cells, using sanger sequencing.
    [Show full text]
  • Datasheet A05438-3 Anti-WASL Antibody
    Product datasheet Anti-WASL Antibody Catalog Number: A05438-3 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-WASL Antibody Gene Name WASL Source Rabbit IgG Species Reactivity human, mouse, rat Tested Application WB,FCM,Direct ELISA Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen E.coli-derived human N WASP/WASL recombinant protein (Position: Q5-H211). Purification Immunogen affinity purified. Observed MW 70KD Dilution Ratios Western blot: 1:500-2000 Flow cytometry (FCM): 1-3μg/1x106 cells Direct ELISA: 1:100-1000 Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Neural Wiskott-Aldrich syndrome protein is a protein that in humans is encoded by the WASL gene. This gene encodes a member of the Wiskott-Aldrich syndrome (WAS) protein family. Wiskott-Aldrich syndrome proteins share similar domain structure, and associate with a variety of signaling molecules to alter the actin cytoskeleton. The encoded protein is highly expressed in neural tissues, and interacts with several proteins involved in cytoskeletal organization, including cell division control protein 42 (CDC42) and the actin-related protein-2/3 (ARP2/3) complex. The encoded protein may be involved in the formation of long actin microspikes, and in neurite extension. Reference Anti-WASL Antibody被引用在0文献中。 暂无引用 FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE.
    [Show full text]
  • The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells
    BASIC RESEARCH www.jasn.org The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells Michael Ignarski,1 Constantin Rill,1 Rainer W.J. Kaiser,1 Madlen Kaldirim,1 René Neuhaus,1 Reza Esmaillie,1 Xinping Li,2 Corinna Klein,3 Katrin Bohl,1 Maike Petersen,1 Christian K. Frese,3 Martin Höhne ,1 Ilian Atanassov,2 Markus M. Rinschen,1 Katja Höpker,1 Bernhard Schermer,1,4,5 Thomas Benzing,1,4,5 Christoph Dieterich,6,7 Francesca Fabretti,1 and Roman-Ulrich Müller 1,4,5 1Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany; 2Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 3Proteomics Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, 4Nephrolab, Cologne Excellence Cluster on Cellular Stress Responses in Aging- associated Diseases, Faculty of Medicine and University Hospital Cologne, and 5Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany; 6Department of Internal Medicine III, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; and 7German Center for Cardiovascular Research (DZHK)–Partner site, Heidelberg/Mannheim, Germany ABSTRACT Background RNA-binding proteins (RBPs) are fundamental regulators of cellular biology that affect all steps in the generation and processing of RNA molecules. Recent evidence suggests that regulation of RBPs that modulate both RNA stability and translation may have a profound effect on the proteome. However, regulation of RBPs in clinically relevant experimental conditions has not been studied systematically. Methods We used RNA interactome capture, a method for the global identification of RBPs to characterize the global RNA‐binding proteome (RBPome) associated with polyA-tailed RNA species in murine ciliated epithelial cells of the inner medullary collecting duct.
    [Show full text]
  • Anti-WASL Antibody (ARG59532)
    Product datasheet [email protected] ARG59532 Package: 100 μl anti-WASL antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes WASL Tested Reactivity Ms, Rat Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name WASL Antigen Species Human Immunogen KLH-conjugated synthetic peptide between aa. 165-198 of Human WASL. Conjugation Un-conjugated Alternate Names WASPB; N-WASP; NWASP; Neural Wiskott-Aldrich syndrome protein Application Instructions Application table Application Dilution WB 1:1000 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control C2C12 Calculated Mw 55 kDa Properties Form Liquid Purification Purification with Protein A and immunogen peptide. Buffer PBS and 0.09% (W/V) Sodium azide. Preservative 0.09% (W/V) Sodium azide. Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation www.arigobio.com 1/2 Gene Symbol WASL Gene Full Name Wiskott-Aldrich syndrome-like Background This gene encodes a member of the Wiskott-Aldrich syndrome (WAS) protein family. Wiskott-Aldrich syndrome proteins share similar domain structure, and associate with a variety of signaling molecules to alter the actin cytoskeleton. The encoded protein is highly expressed in neural tissues, and interacts with several proteins involved in cytoskeletal organization, including cell division control protein 42 (CDC42) and the actin-related protein-2/3 (ARP2/3) complex.
    [Show full text]
  • WASL Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. WASL polyclonal antibody Catalog: BS91449 Host: Rabbit Reactivity: Human, Mouse BackGround: Storage&Stability: This gene encodes a member of the Wiskott-Aldrich syn- Store at +4°C after thawing. Aliquot store at -20°C or drome (WAS) protein family. Wiskott-Aldrich syndrome -80°C. Avoid repeated freeze / thaw cycles. proteins share similar domain structure, and associate Specificity: with a variety of signaling molecules to alter the actin WASL polyclonal antibody detects endogenous levels of cytoskeleton. The encoded protein is highly expressed in WASL protein. neural tissues, and interacts with several proteins in- DATA: volved in cytoskeletal organization, including cell divi- sion control protein 42 (CDC42) and the actin-related protein-2/3 (ARP2/3) complex. The encoded protein may be involved in the formation of long actin microspikes, and in neurite extension. Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex. Involved in mitosis and cytokinesis, via its role in the regulation of actin polymerization. Binds to Western blot analysis of WASL on mouse Human serum lysates using HSF1/HSTF1 and forms a complex on heat shock pro- anti-Ubiquitin antibody at 1/500 dilution. moter elements (HSE) that negatively regulates HSP90 expression.. Product: Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, 50% glycerol, pH7.2 Molecular Weight: 55 kDa Swiss-Prot: ICC staining WASL in SK-Br-3 cells (green). The nuclear counter stain O00401(Human) Q91YD9(Mouse) is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised Purification&Purity: with 0.25% Triton X100/PBS.
    [Show full text]
  • 4036.Full.Pdf
    The Journal of Immunology Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in ARPC1B Raz Somech,*,† Atar Lev,*,† Yu Nee Lee,*,† Amos J. Simon,*,†,‡ Ortal Barel,†,x Ginette Schiby,{ Camila Avivi,{ Iris Barshack,{ Michele Rhodes,‖ Jiejing Yin,‖ Minshi Wang,‖ Yibin Yang,‖ Jennifer Rhodes,‖ Nufar Marcus,# Ben-Zion Garty,# Jerry Stein,** Ninette Amariglio,†,‡,x,†† Gideon Rechavi,†,x David L. Wiest,‖,1 and Yong Zhang‖,1 Regulation of the actin cytoskeleton is crucial for normal development and function of the immune system, as evidenced by the severe immune abnormalities exhibited by patients bearing inactivating mutations in the Wiskott–Aldrich syndrome protein (WASP), a key regulator of actin dynamics. WASP exerts its effects on actin dynamics through a multisubunit complex termed Arp2/3. Despite the critical role played by Arp2/3 as an effector of WASP-mediated control over actin polymerization, mutations in protein components of the Arp2/3 complex had not previously been identified as a cause of immunodeficiency. Here, we describe two brothers with hematopoietic and immunologic symptoms reminiscent of Wiskott–Aldrich syndrome (WAS). However, these patients lacked mutations in any of the genes previously associated with WAS. Whole-exome sequencing revealed a homozygous 2 bp deletion, n.c.G623DEL-TC (p.V208VfsX20), in Arp2/3 complex component ARPC1B that causes a frame shift resulting in premature termination. Modeling of the disease in zebrafish revealed that ARPC1B plays a critical role in supporting T cell and thrombocyte development. Moreover, the defects in development caused by ARPC1B loss could be rescued by the intact human ARPC1B ortholog, but not by the p.V208VfsX20 variant identified in the patients.
    [Show full text]
  • Staphylococcus Aureus Recruits Cdc42gap Through Recycling
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 2937-2949 doi:10.1242/jcs.186213 RESEARCH ARTICLE Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells Liane Rauch1,*, Kirsten Hennings1,*, Claudia Trasak1, Anja Röder1, Barbara Schröder2,3, Friedrich Koch-Nolte4, Felix Rivera-Molina5, Derek Toomre5 and Martin Aepfelbacher1,‡ ABSTRACT Staphylococcus aureus is a major agent of blood stream infection Activation and invasion of the vascular endothelium by and sepsis worldwide (Lowy, 1998). Activation and invasion of the Staphylococcus aureus is a major cause of sepsis and vascular endothelium is thought to underlie the main symptoms of S. aureus endocarditis. For endothelial cell invasion, S. aureus triggers actin sepsis (Kerrigan and McDonnell, 2015). Furthermore, S. aureus polymerization through Cdc42, N-WASp (also known as WASL) and has a propensity to invade the endothelial lining of heart the Arp2/3 complex to assemble a phagocytic cup-like structure. valves leading to valve colonization and bacterial endocarditis Here, we show that after stimulating actin polymerization (Chorianopoulos et al., 2009). Animal models have revealed that S. aureus staphylococci recruit Cdc42GAP (also known as ARHGAP1) which intravascular preferentially attaches to the endothelium of deactivates Cdc42 and terminates actin polymerization in the postcapillary venules (Laschke et al., 2005). In vitro in vivo S. aureus phagocytic cups. Cdc42GAP is delivered to the invading bacteria and invades endothelial cells through its on recycling endocytic vesicles in concert with the exocyst complex. surface-exposed fibronectin-binding proteins A and B (FnBPA and When Cdc42GAP recruitment by staphylococci was prevented by FnBPB) (Que et al., 2005; Schroder et al., 2006; Sinha et al., 2000).
    [Show full text]
  • Integration of Protein Binding Interfaces and Abundance
    INTEGRATION OF PROTEIN BINDING INTERFACES AND ABUNDANCE DATA REVEALS EVOLUTIONARY PRESSURES IN PROTEIN NETWORKS by David Orestis Holland A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland January, 2018 © David O. Holland 2018 All rights reserved Abstract Networks of protein-protein interactions have received considerable interest in the past two decades for their insights about protein function and evolution. Traditionally, these networks only map the functional partners of proteins; they lack further levels of data such as binding affinity, allosteric regulation, competitive vs noncompetitive binding, and protein abundance. Recent experiments have made such data on a network-wide scale available, and in this thesis I integrate two extra layers of data in particular: the binding sites that proteins use to interact with their partners, and the abundance or “copy numbers” of the proteins. By analyzing the networks for the clathrin-mediated endocytosis (CME) system in yeast and the ErbB signaling pathway in humans, I find that this extra data reveals new insights about the evolution of protein networks. The structure of the binding site or interface interaction network (IIN) is optimized to allow higher binding specificity; that is, a high gap in strength between functional binding and nonfunctional mis-binding. This strongly implies that mis-binding is an evolutionary error-load constraint shaping protein network structure. Another method to limit mis-binding is to balance protein copy numbers so that there are no “leftover” proteins available for mis-binding. By developing a new method to quantify balance in IINs, I show that ii the CME network is significantly balanced when compared to randomly sampled sets of copy numbers.
    [Show full text]