Cob Or Chimera?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I . the Color Gene C
THE ABC OF COLOR INHERITANCE IN HORSES W. E. CASTLE Division of Genetics, University of California, Berkeley, California Received October, 27, 1947 HE study of color inheritance in horses was begun in the early days of Tgenetics. Indeed many facts concerning it had already been established earlier, by DARWINin his book on “Variation of Animals and Plants under Domestication.” At irregular inteivals since then, new attempts have been made to collect and classify in terms of genetic factors the records contained in stud books concerning the colors of colts in relation to the colors of their sires and dams. A full bibliography is given by CREWand BuCHANAN-SMITH (19301. By such studies, we have acquired very full information as to what color a colt may be expected to have, when the color of its parents and grandparents is known. This knowledge is empirical rather than experimental in nature. For horses being slow breeding and expensive are rarely available for direct experi- mental study, such as can be made with the small laboratory mammals, mice, rats, rabbits and guinea pigs. We have definite information that color inheritance in horses involves the existence of mutant genes similar to those demonstrated by experimental studies to be involved in color inheritance of other mammals. But the horse genes have been given special names, as they were successively discovered, and it is difficult at present to correlate them with the better known names and geneic symbols used by the experimental breeders. The present paper is an attempt to make such a correlation. Just as in morphological studies comparative anatomy was found useful and still is used to establish homologies between systems of organs, so in mammalian genetics, a comparative study of gene action in the production of coat colors and color patterns may also be of value. -
Genome-Wide Analysis Reveals Selection for Important Traits In
Genome-wide analysis reveals selection for important traits in domestic horse breeds Jessica L Petersen, James R Mickelson, Aaron K Rendahl, Stephanie J Valberg, Lisa S Andersson, Jeanette Axelsson, Ernie Bailey, Danika Bannasch, Matthew M Binns, Alexandre S Borges, et al. To cite this version: Jessica L Petersen, James R Mickelson, Aaron K Rendahl, Stephanie J Valberg, Lisa S Andersson, et al.. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genetics, Public Library of Science, 2013, 9, online (1), Non paginé. 10.1371/journal.pgen.1003211. hal-01000690 HAL Id: hal-01000690 https://hal.archives-ouvertes.fr/hal-01000690 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds Jessica L. Petersen1*, James R. Mickelson1, Aaron K. Rendahl2, Stephanie J. Valberg1, Lisa S. Andersson3, Jeanette Axelsson3, Ernie Bailey4, Danika Bannasch5, Matthew M. Binns6, Alexandre S. Borges7, Pieter Brama8, Artur da Caˆmara Machado9, Stefano Capomaccio10, Katia Cappelli10, E. Gus Cothran11, Ottmar Distl12, Laura Fox-Clipsham13, Kathryn T. Graves4,Ge´rard Gue´rin14, Bianca Haase15, Telhisa Hasegawa16, Karin Hemmann17, Emmeline W. -
List of Horse Breeds 1 List of Horse Breeds
List of horse breeds 1 List of horse breeds This page is a list of horse and pony breeds, and also includes terms used to describe types of horse that are not breeds but are commonly mistaken for breeds. While there is no scientifically accepted definition of the term "breed,"[1] a breed is defined generally as having distinct true-breeding characteristics over a number of generations; its members may be called "purebred". In most cases, bloodlines of horse breeds are recorded with a breed registry. However, in horses, the concept is somewhat flexible, as open stud books are created for developing horse breeds that are not yet fully true-breeding. Registries also are considered the authority as to whether a given breed is listed as Light or saddle horse breeds a "horse" or a "pony". There are also a number of "color breed", sport horse, and gaited horse registries for horses with various phenotypes or other traits, which admit any animal fitting a given set of physical characteristics, even if there is little or no evidence of the trait being a true-breeding characteristic. Other recording entities or specialty organizations may recognize horses from multiple breeds, thus, for the purposes of this article, such animals are classified as a "type" rather than a "breed". The breeds and types listed here are those that already have a Wikipedia article. For a more extensive list, see the List of all horse breeds in DAD-IS. Heavy or draft horse breeds For additional information, see horse breed, horse breeding and the individual articles listed below. -
Electronic Supplementary Material - Appendices
1 Electronic Supplementary Material - Appendices 2 Appendix 1. Full breed list, listed alphabetically. Breeds searched (* denotes those identified with inherited disorders) # Breed # Breed # Breed # Breed 1 Ab Abyssinian 31 BF Black Forest 61 Dul Dülmen Pony 91 HP Highland Pony* 2 Ak Akhal Teke 32 Boe Boer 62 DD Dutch Draft 92 Hok Hokkaido 3 Al Albanian 33 Bre Breton* 63 DW Dutch Warmblood 93 Hol Holsteiner* 4 Alt Altai 34 Buc Buckskin 64 EB East Bulgarian 94 Huc Hucul 5 ACD American Cream Draft 35 Bud Budyonny 65 Egy Egyptian 95 HW Hungarian Warmblood 6 ACW American Creme and White 36 By Byelorussian Harness 66 EP Eriskay Pony 96 Ice Icelandic* 7 AWP American Walking Pony 37 Cam Camargue* 67 EN Estonian Native 97 Io Iomud 8 And Andalusian* 38 Camp Campolina 68 ExP Exmoor Pony 98 ID Irish Draught 9 Anv Andravida 39 Can Canadian 69 Fae Faeroes Pony 99 Jin Jinzhou 10 A-K Anglo-Kabarda 40 Car Carthusian 70 Fa Falabella* 100 Jut Jutland 11 Ap Appaloosa* 41 Cas Caspian 71 FP Fell Pony* 101 Kab Kabarda 12 Arp Araappaloosa 42 Cay Cayuse 72 Fin Finnhorse* 102 Kar Karabair 13 A Arabian / Arab* 43 Ch Cheju 73 Fl Fleuve 103 Kara Karabakh 14 Ard Ardennes 44 CC Chilean Corralero 74 Fo Fouta 104 Kaz Kazakh 15 AC Argentine Criollo 45 CP Chincoteague Pony 75 Fr Frederiksborg 105 KPB Kerry Bog Pony 16 Ast Asturian 46 CB Cleveland Bay 76 Fb Freiberger* 106 KM Kiger Mustang 17 AB Australian Brumby 47 Cly Clydesdale* 77 FS French Saddlebred 107 KP Kirdi Pony 18 ASH Australian Stock Horse 48 CN Cob Normand* 78 FT French Trotter 108 KF Kisber Felver 19 Az Azteca -
2008 Eastern National 4-H Horse Bowl Round 7
2008 Eastern National 4-H Horse Bowl Round 7 One-On-One 1. C1 Q. What is bradycardia? A. An abnormally slow heart rate S. DET p. 37 440/3 2. C2 Q. The following horses are part of the history of what breed… Bourbon King, Wing Commander and Denmark? A. American Saddlebred horse S. HIH 162-2 200/3 3. C3 Q. If you are “fuzztail running”, what are you doing? A. Herding and catching wild horses S. DET p. 116 920/4 4. C4 Q. In the zoological classification what family includes the horse? A. Equidae S. Evans p.13 100/2 1 2008 Eastern National 4-H Horse Bowl Round 7 5. C1 Q. What is the only function of the vitamin D in the horse’s body? A. Maintaining plasma calcium levels – by regulating calcium absorption S. Lewis p. 48, Evans p. 221 740/3 6. C2 Q. What is the pangaré effect on color? A. Results in light areas of color on the muzzle, over the eyes, on the flanks and inside the legs S. Evans p.481 310/3 7. C3 Q. In the history of Spain during the reign of Queen Isabella, what current breed of horses was known as Golden Isabellas? A. Palomino S. Evans p.50 200/3 8. C4 Q. What sex-linked disease results in a deficiency of clotting factor VIII? A. Hemophilia A (also accept Hemophilia) S. Evans p.511 550/3 2 2008 Eastern National 4-H Horse Bowl Round 7 9. C1 Q. In show jumping, a “combination obstacle” consists of two or more separate jumps that are numbered and lettered. -
All Senior Questions Question Answer Source
All Senior Questions Question Answer Source Where in the digestive tract are amino acids Large intestine. HIH 710 synthesized? What unsoundness is most noticeable when Stringhalt. Ensminger, 530 backing the horse? Describe the ideal angles of the horse's front feet Front feet: 45 - 50 degrees. Beeman, 8 and hind feet. Rear feet: 50 - 60 degrees. An excessive reaction of the skin to sunlight is Photosensitivity. Veterinary Medicine, called what? 591 What term is used to describe a hoof wall angle Club foot. Curtis, 45 of 65 degrees or more? The American Paint Horse Association is devoted Paints, Quarter Horses, and Thoroughbreds. HBM strictly to stock horses and bases its registry on the blood of what 3 breeds? What do the letters CF stand for? Crude Fiber. Ensminger, 550 The common digital artery supplies blood to what Phalanges and foot. HBM parts of the horse? What is the interdental space? The gum space between the incisors and the HBM molars. Thursday, January 03, 1980 Page 1 of 95 University of Kentucky, College of Agriculture,Cooperative Extenison Service All Senior Questions Question Answer Source What color horses are more commonly prone to Gray horses. Veterinary Medicine, melanomas? 307 Most of the nutrients are found in what part of the Leaves. HBM forage plant? Excessive granulation tissue rising out of and Proud flesh. Ensminger, 527 above the edges of a wound is called what? Explain the functional difference of arteries and Arteries carry blood away from the heart to the Evans, Borton et all, veins in the horse's body. body tissues. -
FOREIGN RIGHTS CATALOGUE 2013 TRAVEL 2 GLÉNAT LIVRES Investigations
FOREIGN RIGHTS CATALOGUE 2013 THE WORLD’S GREATEST THE MOST BEAUTIFUL TREKS TREKS OF THE 32 EXPLORATIONS ON THE 5 CONTINENTS MEDITERRANEAN Text by Thomas BIANCHIN & Christophe MIGEON Text and photography by Gian Luca BOETTI Photography by Christophe RAYLAT & Stéphanie THIZY November 2012 October 2011 (3rd reprint in Fall 2012) 192 colour pages 224 colour pages Format: 215 x 288 mm 150 photographs Hardback cased with a jacket Format: 275 x 328 mm 61,000 words Hardback cased with a jacket GLÉNATLIVRES Retail price France: 35,50 Euros GLÉNATLIVRES 58,000 words Rights: World except for Italy Retail price France: 35,50 Euros Here it is at last! An illustrated book in a time when local From the Himalayan ranges to the deserts of Africa, high Tibetan treks are more and more popular, as the result of hiker’s plateaus to the grasslands of Iceland, The World’s Greatest Treks desires to wander away without having to travel across covers 32 treks on the five continents, most of which count the world to do so. And yet the Mediterranean offers some among the must-see routes of any amateur trekker. Some routes of the world’s most exotic itineraries by the sea! are well known, others more unexpected, new and original. The book offers 21 treks chosen amongst the most beautiful Great traverses or small circuits, in the mountains or across ones in Spain, France, Italy and Greece, and all follow deserts, on the coast or through countryside, they are often quite the blue pattern of the Mediterranean coastline. demanding but never technical. -
Basic Horse Genetics
ALABAMA A&M AND AUBURN UNIVERSITIES Basic Horse Genetics ANR-1420 nderstanding the basic principles of genetics and Ugene-selection methods is essential for people in the horse-breeding business and is also beneficial to any horse owner when it comes to making decisions about a horse purchase, suitability, and utilization. Before getting into the basics of horse-breeding deci- sions, however, it is important that breeders under- stand the following terms. Chromosome - a rod-like body found in the cell nucleus that contains the genes. Chromosomes occur in pairs in all cells, with the exception of the sex cells (sperm and egg). Horses have 32 pairs of chromo- somes, and donkeys have 31 pairs. Gene - a small segment of chromosome (DNA) that contains the genetic code. Genes occur in pairs, one Quantitative traits - traits that show a continuous on each chromosome of a pair. range of phenotypic variation. Quantitative traits Alleles - the alternative states of a particular gene. The usually are controlled by more than one gene pair gene located at a fixed position on a chromosome will and are heavily influenced by environmental factors, contain a particular gene or one of its alleles. Multiple such as track condition, trainer expertise, and nutrition. alleles are possible. Because of these conditions, quantitative traits cannot be classified into distinct categories. Often, the impor- Genotype - the genetic makeup of an individual. With tant economic traits of livestock are quantitative—for alleles A and a, three possible genotypes are AA, Aa, example, cannon circumference and racing speed. and aa. Not all of these pairs of alleles will result in the same phenotype because pairs may have different Heritability - the portion of the total phenotypic modes of action. -
Color Coat Genetics
Color CAMERoatICAN ≤UARTER Genet HORSE ics Sorrel Chestnut Bay Brown Black Palomino Buckskin Cremello Perlino Red Dun Dun Grullo Red Roan Bay Roan Blue Roan Gray SORREL WHAT ARE THE COLOR GENETICS OF A SORREL? Like CHESTNUT, a SORREL carries TWO copies of the RED gene only (or rather, non-BLACK) meaning it allows for the color RED only. SORREL possesses no other color genes, including BLACK, regardless of parentage. It is completely recessive to all other coat colors. When breeding with a SORREL, any color other than SORREL will come exclusively from the other parent. A SORREL or CHESTNUT bred to a SORREL or CHESTNUT will yield SORREL or CHESTNUT 100 percent of the time. SORREL and CHESTNUT are the most common colors in American Quarter Horses. WHAT DOES A SORREL LOOK LIKE? The most common appearance of SORREL is a red body with a red mane and tail with no black points. But the SORREL can have variations of both body color and mane and tail color, both areas having a base of red. The mature body may be a bright red, deep red, or a darker red appearing almost as CHESTNUT, and any variation in between. The mane and tail are usually the same color as the body but may be blonde or flaxen. In fact, a light SORREL with a blonde or flaxen mane and tail may closely resemble (and is often confused with) a PALOMINO, and if a dorsal stripe is present (which a SORREL may have), it may be confused with a RED DUN. -
Sensational French Trotter Bold Eagle. SUNDAY, JANUARY 24, 2016
SUNDAY, JANUARY 24, 2016 Bold Eagle ready to fly in French classic and he now ranks among the top stallions in France. His by Dean A. Hoffman offspring have found success elsewhere in Europe. In fact, On Saturday evening, Jan. 24, 2009, I was making my his son Bold Eagle will be the likely favorite for this year's way up the steps to the ballroom at the Hotel Terrass in the Prix d'Amerique, which will be contested on the final day of Montmartre section of Paris. I was en route to a cocktail this month. party on the eve of the Prix d'Amerique, the great French On Jan. 17, Bold Eagle made his rivals look ordinary in trotting classic to be contested the next day. the stretch drive of the Prix de Belgique, the last major prep Suddenly I heard someone calling my name. I turned and race for the Prix d'Amerique. Driver Franck Nivard settled spotted Swedish trotting journalist Lars Dahlgren. I'd known him into a third-over spot as the trotters fought it out in the him for many years. early stages of the race. Nivard sat very confidently until the final turn and then eased Bold Eagle out into the clear. Once the field turned into the stretch, what Bold Eagle did defies belief. He sailed past his rivals - the best horses in France - like the proverbial freight train past a tramp. He displayed that same rapid turn of foot that made his sire such a sensation. Like father, like son. Watching that race would make you think that the Prix d'Amerique (Jan. -
Genetic Structure and Gene Flows Within Horses: a Genealogical Study at the French Population Scale
Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale Pauline Pirault1, Sophy Danvy2, Etienne Verrier1,3, Gre´goire Leroy1,3* 1 AgroParisTech, Unite´ Mixte de Recherche 1313 Ge´ne´tique Animale et Biologie Inte´grative, Paris, France, 2 Institut Franc¸ais du Cheval et de l’Equitation, Le Pin au Haras, France, 3 Institut National de la Recherche Agronomique, Unite´ Mixte de Recherche 1313 Ge´ne´tique Animale et Biologie Inte´grative, Domaine de Vilvert, Jouy-en-Josas, France Abstract Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average FIS of 20.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges. -
Allelic and Genotypic Distribution in Single Nucleotide Polymorphism (SNP) G. 676A > G of Melanocortin‐ 1 Receptor
Maharani et al. Archive of SID Allelic and Genotypic Distribution in Single Nucleotide Polymorphism (SNP) G.676A > G of Melanocortin‐1 Receptor (MC1R) Gene in Indonesian Goat Breeds 1* 2 1 2 Research Article D. Maharani , S. Elieser , I.G.S. Budisatria , A. Batubara , 1 1 D.N.H. Hariyono and A.P.Z.N.L. Sari 1 Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta 55281, Indonesia 2 Indonesian Goat Research Institute Sei Putih, Galang 20585, North Sumatera, Indonesia Received on: 18 Dec 2018 Revised on: 13 Feb 2019 Accepted on: 16 Feb 2019 Online Published on: Dec 2019 *Correspondence E‐mail: [email protected] © 2010 Copyright by Islamic Azad University, Rasht Branch, Rasht, Iran Online version is available on: www.ijas.ir The melanocortin-1 receptor (MC1R) gene has been investigated by many studies regarding the pigmentation variation in various species. In order to determine its allelic and genotypic distribution, we sequenced the goat MC1R gene from 78 individuals in ten populations (Gembrong, Senduro, Ettawa Grade, Boerawa, Boerka, Kosta, Samosir, Muara, Boer and Kacang). Direct sequencing method was performed to detect the single nucleotide polymorphisms (SNPs). Three SNPs (g.676A>G, g.748G>T and g.801C>G) were identified in the gene target. The SNP g.676 A > G was used to genotype the investigated animals by using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method with EarI restriction enzyme. In all studied populations, the A allele had the highest frequency (83%) and the G allele had the lowest frequency (17%).