Allelic and Genotypic Distribution in Single Nucleotide Polymorphism (SNP) G. 676A > G of Melanocortin‐ 1 Receptor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I . the Color Gene C
THE ABC OF COLOR INHERITANCE IN HORSES W. E. CASTLE Division of Genetics, University of California, Berkeley, California Received October, 27, 1947 HE study of color inheritance in horses was begun in the early days of Tgenetics. Indeed many facts concerning it had already been established earlier, by DARWINin his book on “Variation of Animals and Plants under Domestication.” At irregular inteivals since then, new attempts have been made to collect and classify in terms of genetic factors the records contained in stud books concerning the colors of colts in relation to the colors of their sires and dams. A full bibliography is given by CREWand BuCHANAN-SMITH (19301. By such studies, we have acquired very full information as to what color a colt may be expected to have, when the color of its parents and grandparents is known. This knowledge is empirical rather than experimental in nature. For horses being slow breeding and expensive are rarely available for direct experi- mental study, such as can be made with the small laboratory mammals, mice, rats, rabbits and guinea pigs. We have definite information that color inheritance in horses involves the existence of mutant genes similar to those demonstrated by experimental studies to be involved in color inheritance of other mammals. But the horse genes have been given special names, as they were successively discovered, and it is difficult at present to correlate them with the better known names and geneic symbols used by the experimental breeders. The present paper is an attempt to make such a correlation. Just as in morphological studies comparative anatomy was found useful and still is used to establish homologies between systems of organs, so in mammalian genetics, a comparative study of gene action in the production of coat colors and color patterns may also be of value. -
Cob Or Chimera?
Cob or Chimera? UK Expat Sarah Redstone Lee explains why she believes the Cob Normand to be the most versatile cob of them all nce we had decided to take the The origins of the Normandy Cob can be To this day, the Chateau of Versailles is still plunge, sell up, pack up and traced back to Great Britain, the first ‘Norman’ surrounded by carriage driving Normandy make the move to Normandy; horse, to arrive on our shores was during the Cobs in homage to his passion for the breed. code named Operation transportation of a herd of around 2- 3,000, in The National Stud and home of the Overseas ( as but a small preparations for the battle of Hastings of 1066. Normandy Cob was founded by Napoléon in homage to operation Overlord in Normandy, Much of the success of the invasion depended 1806. By 1840, some of the cobs were crossed Owhich formed part of the D-Day landings), it on the horses that were bred for the endurance with King Henry the VIII’s favourite breed, was not long before my husband and I were required in order to carry the weight of the now extinct Norfolk trotter. This further enjoying la belle vie Francaise. We have been armoured suits, weapons and chain mail, yet the enhanced the look of elegance combined here for almost 10 years now, and, aside from superior among them also possessed great speed. with speed. The standard was set and the benefitting from the usual attractions that The Normans, are even to this day well Normandy Cob was then divided in to two France has to offer, that needs no form of known for their breeding of the Percheron groups; heavier horses for work, and lighter introduction, I have been very privileged to and the French Trotter. -
2008 Eastern National 4-H Horse Bowl Round 7
2008 Eastern National 4-H Horse Bowl Round 7 One-On-One 1. C1 Q. What is bradycardia? A. An abnormally slow heart rate S. DET p. 37 440/3 2. C2 Q. The following horses are part of the history of what breed… Bourbon King, Wing Commander and Denmark? A. American Saddlebred horse S. HIH 162-2 200/3 3. C3 Q. If you are “fuzztail running”, what are you doing? A. Herding and catching wild horses S. DET p. 116 920/4 4. C4 Q. In the zoological classification what family includes the horse? A. Equidae S. Evans p.13 100/2 1 2008 Eastern National 4-H Horse Bowl Round 7 5. C1 Q. What is the only function of the vitamin D in the horse’s body? A. Maintaining plasma calcium levels – by regulating calcium absorption S. Lewis p. 48, Evans p. 221 740/3 6. C2 Q. What is the pangaré effect on color? A. Results in light areas of color on the muzzle, over the eyes, on the flanks and inside the legs S. Evans p.481 310/3 7. C3 Q. In the history of Spain during the reign of Queen Isabella, what current breed of horses was known as Golden Isabellas? A. Palomino S. Evans p.50 200/3 8. C4 Q. What sex-linked disease results in a deficiency of clotting factor VIII? A. Hemophilia A (also accept Hemophilia) S. Evans p.511 550/3 2 2008 Eastern National 4-H Horse Bowl Round 7 9. C1 Q. In show jumping, a “combination obstacle” consists of two or more separate jumps that are numbered and lettered. -
All Senior Questions Question Answer Source
All Senior Questions Question Answer Source Where in the digestive tract are amino acids Large intestine. HIH 710 synthesized? What unsoundness is most noticeable when Stringhalt. Ensminger, 530 backing the horse? Describe the ideal angles of the horse's front feet Front feet: 45 - 50 degrees. Beeman, 8 and hind feet. Rear feet: 50 - 60 degrees. An excessive reaction of the skin to sunlight is Photosensitivity. Veterinary Medicine, called what? 591 What term is used to describe a hoof wall angle Club foot. Curtis, 45 of 65 degrees or more? The American Paint Horse Association is devoted Paints, Quarter Horses, and Thoroughbreds. HBM strictly to stock horses and bases its registry on the blood of what 3 breeds? What do the letters CF stand for? Crude Fiber. Ensminger, 550 The common digital artery supplies blood to what Phalanges and foot. HBM parts of the horse? What is the interdental space? The gum space between the incisors and the HBM molars. Thursday, January 03, 1980 Page 1 of 95 University of Kentucky, College of Agriculture,Cooperative Extenison Service All Senior Questions Question Answer Source What color horses are more commonly prone to Gray horses. Veterinary Medicine, melanomas? 307 Most of the nutrients are found in what part of the Leaves. HBM forage plant? Excessive granulation tissue rising out of and Proud flesh. Ensminger, 527 above the edges of a wound is called what? Explain the functional difference of arteries and Arteries carry blood away from the heart to the Evans, Borton et all, veins in the horse's body. body tissues. -
Basic Horse Genetics
ALABAMA A&M AND AUBURN UNIVERSITIES Basic Horse Genetics ANR-1420 nderstanding the basic principles of genetics and Ugene-selection methods is essential for people in the horse-breeding business and is also beneficial to any horse owner when it comes to making decisions about a horse purchase, suitability, and utilization. Before getting into the basics of horse-breeding deci- sions, however, it is important that breeders under- stand the following terms. Chromosome - a rod-like body found in the cell nucleus that contains the genes. Chromosomes occur in pairs in all cells, with the exception of the sex cells (sperm and egg). Horses have 32 pairs of chromo- somes, and donkeys have 31 pairs. Gene - a small segment of chromosome (DNA) that contains the genetic code. Genes occur in pairs, one Quantitative traits - traits that show a continuous on each chromosome of a pair. range of phenotypic variation. Quantitative traits Alleles - the alternative states of a particular gene. The usually are controlled by more than one gene pair gene located at a fixed position on a chromosome will and are heavily influenced by environmental factors, contain a particular gene or one of its alleles. Multiple such as track condition, trainer expertise, and nutrition. alleles are possible. Because of these conditions, quantitative traits cannot be classified into distinct categories. Often, the impor- Genotype - the genetic makeup of an individual. With tant economic traits of livestock are quantitative—for alleles A and a, three possible genotypes are AA, Aa, example, cannon circumference and racing speed. and aa. Not all of these pairs of alleles will result in the same phenotype because pairs may have different Heritability - the portion of the total phenotypic modes of action. -
Color Coat Genetics
Color CAMERoatICAN ≤UARTER Genet HORSE ics Sorrel Chestnut Bay Brown Black Palomino Buckskin Cremello Perlino Red Dun Dun Grullo Red Roan Bay Roan Blue Roan Gray SORREL WHAT ARE THE COLOR GENETICS OF A SORREL? Like CHESTNUT, a SORREL carries TWO copies of the RED gene only (or rather, non-BLACK) meaning it allows for the color RED only. SORREL possesses no other color genes, including BLACK, regardless of parentage. It is completely recessive to all other coat colors. When breeding with a SORREL, any color other than SORREL will come exclusively from the other parent. A SORREL or CHESTNUT bred to a SORREL or CHESTNUT will yield SORREL or CHESTNUT 100 percent of the time. SORREL and CHESTNUT are the most common colors in American Quarter Horses. WHAT DOES A SORREL LOOK LIKE? The most common appearance of SORREL is a red body with a red mane and tail with no black points. But the SORREL can have variations of both body color and mane and tail color, both areas having a base of red. The mature body may be a bright red, deep red, or a darker red appearing almost as CHESTNUT, and any variation in between. The mane and tail are usually the same color as the body but may be blonde or flaxen. In fact, a light SORREL with a blonde or flaxen mane and tail may closely resemble (and is often confused with) a PALOMINO, and if a dorsal stripe is present (which a SORREL may have), it may be confused with a RED DUN. -
Discriminant Analysis of Colour Measurements Reveals Allele Dosage Effect of ASIP/MC1R in Bay Horses
Czech J. Anim. Sci., 63, 2018 (9): 347–355 Original Paper https://doi.org/10.17221/105/2017-CJAS Discriminant Analysis of Colour Measurements Reveals Allele Dosage Effect of ASIP/MC1R in Bay Horses Thomas Druml1*, Gertrud Grilz-Seger2, Michaela Horna3, Gottfried Brem1 1Institute of Animal Breeding and Genetics, University of Veterinary Sciences Vienna, Vienna, Austria 2Pöckau 41, A-9601 Arnoldstein, Austria 3Department of Animal Husbandry, Slovak University of Agriculture in Nitra, Nitra, Slovakia *Corresponding author: [email protected] ABSTRACT Druml T., Grilz-Seger G., Horna M., Brem G. (2018): Discriminant analysis of colour measurements reveals allele dosage effect of ASIP/MC1R in bay horses. Czech J. Anim. Sci., 63, 347–355. Considering the variability of bay coat colour, we aimed to investigate the association of different shades of bay with ASIP and MC1R genotype combinations and we studied the discrimination between the bay and black coat colour. We phenotypically characterized coat colour using a spectrophotometer. The measurements were based upon international standards as defined by the CIE L*a*b* colour system and we phenotyped five different body parts (neck, armpit area, shoulder, belly, croup) of 43 bay and 14 black horses kept under standardized conditions. From the five measuring points a stepwise discriminant analysis revealed that chromacity and luminescence of armpit area and luminescence of the neck were the most important traits to differentiate between black and bay horses, whereas it was shown that the red colour spectrum of neck, luminescence of the neck, and luminescence of the armpit area grouped bay horses according to their ASIP and MC1R genotype combinations. -
Download Catalog
AQHA VRH YOUTH SOPNSOR 7 O L Ranch………………………………..5,19,45,71 Mailloux Quarter Horse...…3,9,15,26,36,43,57,65,74,81 Jeanie Hovermale Gary & Deb Mailloux Broadus, MT. 59317 ~ 406-436-2284 Vale, SD. 57788 ~ 605-347-3294 Beley Chance…………………………………...…..34 Mankin, James & Tammy………………….…...…..55 Circle, MT. 59215 ~ 406-583-8545 Gillette, WY. 82718 ~ 307-299-2407 Beley, Raelynn……………...………….…………..59 Matlick, Marc………………………...……..……...…52 Circle, MT. 59251 ~ 406-941-0549 Gillette, WY. 82716 ~ 307-680-5156 Jasmine Broeder……………………………….......72 McGill, Les………………………………….………….7 306-640-6946 Broadus MT. 59317 ~ 970-299-8024 Carlson, Jessy……..……………..……..12,40,58,77 Miller, Josh……………………………..…………….51 Newell, SD. 57760 ~ 605-488-0053 Fertile, IA 50434 Casterline, Clint……..2,11,17,27,32,39,44,53,68,76 Mitchell, Lyle…………………………………………..24 Wolf Point, MT 59201 ~ 406-688-8668 Arvada, WY. 82831 ~ 307-736-2670 D & S Cattle Co……………..………………28,54,64 North, Lauren………………………………….……..18 Ekalaka, MT.59324 ~ 253-514-2360 Hysham, MT 59038 ~ 406-342-5349 Rafter Diamond QH…………………….….….31,48,69 Davis Quarter Horses Ed Hinton Dan & Marcy …....1,4,10,16,25,30,37,42,47,56,60 Scobey, MT 59263 ~ 406-783-7285 66,70,75,79,82 Sonnette, MT. 59317 ~ 406-427-5420 Schaffer, Rod & Corrine…………………….….…6,50 Broadus, MT. 59317 ~ 406-672-5546 Gaustad, Dakota…………………………….......…21 Richey, MT. 59251 ~ 406-783-8868 Smith Jr. Glen R………………………………...…...63 Gillette, WY. 82718 ~ 307-622-0851 Haughian, Quinn & Penny……….……………...8,38 Terry, MT 59349 ~ 406-853-1570 Southern Springs Stable…………….13,33,46,67,78 Nanette Black Hawk, Dave……………………………………….23,41 SK. -
Uniform Color Descriptions Glossary of Terms
The International Cat Association Uniform Color Descriptions and Glossary of Terms Version D (09/04/20) Preface to By-Laws, Registration Rules, Show Rules, Standing Rules Uniform Color Descriptions and Standards The By-Laws take precedence over ALL other Rules, followed by the Registration Rules, Show Rules, Standing Rules, and Uniform Color Descriptions, in that order. The Registration Rules, Show Rules, Standing Rules, and Uniform Color Descriptions shall take precedence over any individual Breed Standard UNLESS that Standard is MORE restrictive than the general rules applying to ALL breeds, in which case the Standard shall take precedence. TICA Uniform Color Descriptions, Page 2 Version D 09/04/20 Uniform Color Descriptions Table of Contents 71 Categories, Divisions and Colors. ........................................................................ 4 72 Solid Divisions ..................................................................................................... 8 73 Tortoiseshell Divisions. ........................................................................................ 8 74 Tabby Divisions. .................................................................................................. 9 75 Silver and/or Smoke Divisions. .......................................................................... 14 76 Any Color with White Divisions. ......................................................................... 18 Color Definitions ........................................................................................................ -
Newcolorcharts2020.Pdf
1 Lesli Kathman Blackberry Lane Press First published in 2018 by Blackberry Lane Press 4700 Lone Tree Ct. Charlotte, NC 28269 blackberrylanepress.com © 2020 Blackberry Lane Press, LLC. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. Assessing Color and Breed In model horse competitions, the goal is to faithfully recreate the equestrian world in miniature. It is what exhibitors strive to do and what judges consider when evaluating a table of entries. One aspect of that evaluation is whether the color of the model is realistic. In order to assess this, a judge must be able to distinguish between visually similar (but often geneti- cally distinct) colors and patterns and determine whether or not the color depicted on the model is suitable for the breed the entrant has assigned. This task is complicated by the fact that many participants—who are at heart collectors as well as competitors—are attracted to pieces that are unique or unusual. So how does a judge determine which colors are legitimate for a particular breed and which are questionable or outright unrealistic? When it comes to the range of colors within each breed, there are three basic considerations. Breeds are limited by the genes present in the population (what is possible), by any restrictions placed by their registry (what is permissible), and by what is counted as a fault in breed competitions (what is penalized). -
Everything I Know About Champagne Colored Horses
Just About Everything You Need to Know About Champagne Colored Horses Carolyn Shepard A Brief History The champagne dilution appears to be a recent phenomenon. While we have seen pale skinned horses in centuries old paintings that “look” champagne, it is more likely they were double cream dilutes or cream-pearls. The champagne gene appears to be American, as we have not yet seen the color in the current Spanish or European breeds, the ancient breeds, such as Icelandic horses and Shetland ponies, or in any of the breeds of South America, Russia, India, China, or Arabia. So far, the champagne gene has only been isolated in breeds of American origin. These include the American Quarter Horse, American Paint Horse, American Appaloosa, American Saddlebred, American Cream Draft, Tennessee Walking Horse, Missouri Fox Trotter, Kentucky Mountain Saddle Horse, American Miniature Horse, and crosses from these breeds. One only needs to review the names of these breeds to realize the gene has its foothold in North America. The champagne gene seems to have originated in full sized horses. We have no evidence to suggest the gene exists in any of the purebred pony breeds. The gene has been introduced into the Miniature Horse through down-sizing, and there are quite a few representatives in that breed. The first known and photographed champagne colored horse was Golden Lady, a Tennessee Walking Horse mare born in Tennessee in approximately 1910. Old Granny, an American Cream Draft horse was born in 1913, but there are no known photographs. The first photographed champagne American Saddlebred, Jonquil, was born in 1920. -
Dominant Black in Horses Dp Sponenberg, Mc Weise
Dominant black in horses Dp Sponenberg, Mc Weise To cite this version: Dp Sponenberg, Mc Weise. Dominant black in horses. Genetics Selection Evolution, BioMed Central, 1997, 29 (4), pp.403-408. hal-00894177 HAL Id: hal-00894177 https://hal.archives-ouvertes.fr/hal-00894177 Submitted on 1 Jan 1997 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Note Dominant black in horses DP Sponenberg MC Weise Department of Biosciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 240611- 2714 Wocjik Ln, Sobieski, WI 54171, USA (Received 20 January 1997; accepted 7 March 1997) Summary - The existence of dominant black in horses is supported by a black stallion producing 12 black or near black and no other color of foals from bay mares, and 16 black or nearly black and no other color of foals from chestnut mares. This allele is suggested as being dominant black, ED, at the Extension locus. This allele does not always cause completely eumelanic phenotypes, since some offspring (which were heterozygous) were near black rather than completely black. The dam of this stallion was of a near black or brown, rather than black, phenotype.