The Measurement of the Pressure Distribution Over the Wing of an Aircraft in Flight

Total Page:16

File Type:pdf, Size:1020Kb

The Measurement of the Pressure Distribution Over the Wing of an Aircraft in Flight The Measurement of the Pressure Distribution over the Wing of an Aircraft in Flight Matthew McCarty A thesis submitted in fulfilment of the requirements for the Degree of Masters of Aerospace Engineering School of Aerospace, Civil and Mechanical Engineering University of New South Wales Australian Defence Force Academy August 2008 Statements Originality Statement ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institute, except where due acknowledgement is made in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that the assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed ………………………………………………… Date ………………………………………………… Copyright Statement ‘I hereby grant to The University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the Universities libraries, in all forms of media, now or hereafter known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I have either used no substantial portions of copyright material in my thesis, or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.’ Signed ………………………………………………… Date ………………………………………………… Authenticity Statement ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are minor variations in formatting, they are the result of conversion to digital format.’ Signed ………………………………………………… Date ………………………………………………… ii Abstract A measurement system has been developed for use on a light aircraft to measure the pressure distribution over the wing surfaces. The measurement system was developed as a low-cost alternative to existing advanced measurement systems. The system consisted of low profile, low cost pressure sensors that interfaced digitally with microcontrollers for data acquisition. The pressure sensors and microcontrollers were developed into self-contained sensor modules with all electronic components mounted on flexible circuit board that formed the base of the modules. Two types of module were developed; a module with a single pressure sensor and a module with a row of seven pressure sensors at fifteen millimetre spacing. The total cost of the sensor modules was approximately ninety dollars for a single sensor module and one hundred and forty dollars for the seven sensor module. Studies were carried out using numerical methods to predict the pressure distribution over a NACA2412 airfoil. The numerical studies were used to evaluate the effect of adding the sensor modules to the wing, and the effect of the sensor distribution on measured force coefficients. Numerical predictions were made using the XFOIL software package. This software was validated using the Hess-Smith inviscid panel method. Flight testing was carried out with the pressure distribution measurement system to confirm the operation of the system and to make preliminary measurements. The flight testing focused on the measurement of steady state pressure distributions for comparison with the numerical predictions. Good agreement was found between the measured pressure distributions and the XFOIL predictions. Integration of the pressure distributions enabled comparison of normal force, lift force and quarter chord moment coefficients. The measured force coefficients showed the expected trends with angle of attack although it was found that the limited number of sensor modules used caused large error in the quarter chord moment coefficient compared to the numerical predictions. iii Acknowledgments First and foremost I would like to thank my supervisor Dr Michael Harrap. The chance to undertake postgraduate research that involved flying was a rare one and I am extremely grateful for the opportunity. I would like to thank those from the ‘aviation research group’ at UNSW@ADFA; Sue Burdekin, Raymond Lewis, and Martin Copeland for their support. For the tremendous help and time devoted to teaching a mechanical engineer the intricacies of electrical and electronic engineering I would like to thank Andrew Roberts, Evan Hawke, Tony Peebles, and Geno Ewyk. Thanks needs to go to the other academic staff from the University, whose expertise in various areas was invaluable to bounce ideas off, especially John Milthorpe, Alan Fien, John Young, Krishna Shankar, and Andrew Neely. A big thanks needs to go to the workshop staff that helped with the project, especially Marcus DeAlmeida, Bob Bleakley, Dave Sharp, Jim Baxter and Wayne Jealous. I would like to acknowledge the support of the office staff at the School of ACME; Carol Obrien, Cheri Khalil, Gill Taylor, and Vira Berra. I would like to thank the postgrads from ACME; Chris Hang, Orio Kieboom, Laxmikant Kannapan, Vishwas Puttige, Arif Ashraff, Kartik ‘Ram’ Ramakrishnan, Steve Choi, Abhi Kallapur, Kamal Singh, and Sebastian Oberst. Thanks to my housemates; Ra, Beth, Dave and Sam. Finally thanks must go to my family, Mum, Dad, Jennifer and Thomas whose support from abroad for my endeavours ‘across the ditch’ was invaluable. iv Table of Contents Statements.........................................................................................................................i Statements........................................................................................................................ii Abstract...........................................................................................................................iii Acknowledgments ..........................................................................................................iv Table of Contents ............................................................................................................v List of Figures................................................................................................................vii List of Tables .................................................................................................................xii List of Tables .................................................................................................................xii 1 Introduction.............................................................................................................1 1.1 Why measure pressure distribution? .................................................................1 1.2 Air Pressure Distribution ..................................................................................1 1.3 Measuring the pressure distribution in flight ....................................................6 1.4 Objective ...........................................................................................................6 1.5 Flight Labs........................................................................................................6 1.6 Project Origin....................................................................................................6 1.7 Thesis structure.................................................................................................7 2 A Review of In-Flight Pressure Measurement Techniques.................................9 2.1 Why measure aircraft pressure distributions?...................................................9 2.2 Methods for measuring pressure distributions ................................................11 2.2.1 Tubed Pressure Belts ............................................................................................................11 2.2.2 Flush surface orifices............................................................................................................ 16 2.2.3 Pressure sensitive paint......................................................................................................... 17 2.2.4 Modern advancements .......................................................................................................... 19 2.3 Aerodynamic properties measured using pressure belts .................................23 2.4 Comparisons between pressure distribution measurement methods...............26 2.4.1 Comparison with wind tunnel testing................................................................................... 26 2.4.2 Comparison between flush orifice and pressure belt methods ............................................ 28 2.5 Conclusions.....................................................................................................30 3 Development of the pressure measurement system ...........................................31 3.1 Description of the system................................................................................31 3.2 Pressure Sensor...............................................................................................33 3.2.1 SCP1000 pressure sensor.....................................................................................................
Recommended publications
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • Overview of Pressure Coefficient Data in Building Energy Simulation and Airflow Network Programs
    PREPRINT: Costola D, Blocken B, Hensen JLM. 2009. Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment. In press. Overview of pressure coefficient data in building energy simulation and airflow network programs D. Cóstola*, B. Blocken, J.L.M. Hensen Building Physics and Systems, Eindhoven University of Technology, the Netherlands Abstract Wind pressure coefficients (Cp) are influenced by a wide range of parameters, including building geometry, facade detailing, position on the facade, the degree of exposure/sheltering, wind speed and wind direction. As it is practically impossible to take into account the full complexity of pressure coefficient variation, Building Energy Simulation (BES) and Air Flow Network (AFN) programs generally incorporate it in a simplified way. This paper provides an overview of pressure coefficient data and the extent to which they are currently implemented in BES-AFN programs. A distinction is made between primary sources of Cp data, such as full- scale measurements, reduced-scale measurements in wind tunnels and computational fluid dynamics (CFD) simulations, and secondary sources, such as databases and analytical models. The comparison between data from secondary sources implemented in BES-AFN programs shows that the Cp values are quite different depending on the source adopted. The two influencing parameters for which these differences are most pronounced are the position on the facade and the degree of exposure/sheltering. The comparison of Cp data from different sources for sheltered buildings shows the largest differences, and data from different sources even present different trends. The paper concludes that quantification of the uncertainty related to such data sources is required to guide future improvements in Cp implementation in BES-AFN programs.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • Introduction to Aerospace Engineering
    Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering Aerodynamics 11&12 Prof. H. Bijl ir. N. Timmer 11 & 12. Airfoils and finite wings Anderson 5.9 – end of chapter 5 excl. 5.19 Topics lecture 11 & 12 • Pressure distributions and lift • Finite wings • Swept wings 3 Pressure coefficient Typical example Definition of pressure coefficient : p − p -Cp = ∞ Cp q∞ upper side lower side -1.0 Stagnation point: p=p t … p t-p∞=q ∞ => C p=1 4 Example 5.6 • The pressure on a point on the wing of an airplane is 7.58x10 4 N/m2. The airplane is flying with a velocity of 70 m/s at conditions associated with standard altitude of 2000m. Calculate the pressure coefficient at this point on the wing 4 2 3 2000 m: p ∞=7.95.10 N/m ρ∞=1.0066 kg/m − = p p ∞ = − C p Cp 1.50 q∞ 5 Obtaining lift from pressure distribution leading edge θ V∞ trailing edge s p ds dy θ dx = ds cos θ 6 Obtaining lift from pressure distribution TE TE Normal force per meter span: = θ − θ N ∫ pl cos ds ∫ pu cos ds LE LE c c θ = = − with ds cos dx N ∫ pl dx ∫ pu dx 0 0 NN Write dimensionless force coefficient : C = = n 1 ρ 2 2 Vc∞ qc ∞ 1 1 p − p x 1 p − p x x = l ∞ − u ∞ C = ()C −C d Cn d d n ∫ pl pu ∫ q c ∫ q c 0 ∞ 0 ∞ 0 c 7 T=Lsin α - Dcosα N=Lcos α + Dsinα L R N α T D V α = angle of attack 8 Obtaining lift from normal force coefficient =α − α =α − α L Ncos T sin cl c ncos c t sin L N T =cosα − sin α qc∞ qc ∞ qc ∞ For small angle of attack α≤5o : cos α ≈ 1, sin α ≈ 0 1 1 C≈() CCdx − () l∫ pl p u c 0 9 Example 5.11 Consider an airfoil with chord length c and the running distance x measured along the chord.
    [Show full text]
  • Calculation of Optimum Angle of Attack to Determine Maximum Lift To
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 5, May - 2015 Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil Haci Sogukpinar Ismail Bozkurt Department of Energy Systems Engineering, Department of Mechanical Engineering, Faculty of Technology, University of Adiyaman, Faculty of Engineering, University of Adiyaman, Adiyaman 02040, Turkey, Adiyaman 02040, Turkey. [email protected] [email protected] Abstract—Wind energy is an important source examined. Gharali and Johnson [4] simulated an to meet future energy needs. Therefore, oscillating free stream over a stationary S809 airfoil investigations on wind power technology are numerically by using ANSYS Fluent for comparison the progressing rapidly. In this study, numerical laminar-turbulent transition with the realizable k–, simulation of airfoil was conducted to determine SST and k–w models. Thumthae and Chitsomboon [5] optimum angle of attack for horizontal axis wind investigated the numerical simulation of horizontal axis turbine. This study simulates air flow around wind turbines with untwisted blade to determine the inclined NACA 632-215 airfoil using SST optimal angle of attack that produces the highest turbulence model. Lift, drag coefficient, lift to drag power output. The computational results of the 12⁰ ratio and power coefficient around the airfoil were pitch was compared favorably with the field calculated and compared with different velocity. experimental data of The National Renewable With the increasing of wind velocity, lift and drag Laboratory. Lee et. al. [6] evaluated the performance coefficient increases and maximum lift to drag of a blade with blunt airfoil which was adapted at the ratio starts to increase then degreases again.
    [Show full text]
  • Potential Equations and Pressure Coefficient For
    International Journal of Theoretical & Applied Sciences, 9(1): 35-42(2017) ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247 Potential Equations and Pressure Coefficient for Compressible Flow: Comparison between Compressible and Incompressible Flow in Aerodynamics Menka Yadav * and Santosh Kumar Yadav ** *Research Scholar, J.J.T. University. Rajasthan, India ** Director (A&R), J.J.T. University, Rajasthan, India (Corresponding author: (Corresponding author: Menka Yadav) (Received 02 March, 2017 accepted 05 April, 2017) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: We derive the potential equation for slender bodies and seek to understand the flow field equations for subsonic, supersonic and transonic flow in framework of small perturbation. Large amount of heat and mass can be transferred in a efficient way between the surface and fluid when flow is released against the surface. When aircraft passes through several distinct regions, the flow develops a velocity and pressure profile. In stagnation-region large scale turbulent flow affects transfer coefficient. At the face of object total pressure is higher than behind the object. Profile slopes shows that compressible and incompressible flows are related via certain equations. Zero Mach number incompressible medium causes pressure disturbances to move uniformly in all directions. Flow of heat and mass transfer is strongly affected by the geometry of the device. Keywords: Mach number, Pressure drag, Shock wave, Slender bodies, Velocity profile. I. INTRODUCTION called lift, which acts on the wing. Velocity varies along the wing chord and in the direction normal to its surface. Flow having significant changes in fluid density are The region adjacent to the wall, where the velocity known as compressible flow or flow with Mach number increases from zero to freestream value is known as the greater than 0.3 is treated as compressible.
    [Show full text]
  • Flight Evaluation of a Simple Total Energy-Rate System with Potential Wind-Shear Application
    I NASA TP 1854 c.1 ,! NASA Technical Paper 1854 Flight Evaluation of a Simple Total Energy-Rate System With Potential Wind-Shear Application Aaron J. Ostroff, Richard M. Hueschen, R. F. Hellbaum, and J. F. Creedon MAY 1981 - Ill TECH LIBRARY KAFB, NM I llllll lllll lllll lllll lllll Ill#lllll1111 Ill 00b77b7 NASA Technical Paper 1854 Flight Evaluation of a Simple Total Energy-Rate System With Potential Wind-Shear Application Aaron J. Ostroff, Richard M. Hueschen, R. F. Hellbaum, and J. F. Creedon LaizgIey Research Ceizter Hrtinptoiz, Virgiizia NASA National Aeronautics and Space Administration Scientific and Technical Information Branch 1981 I SUMMARY Wind shears can create havoc during aircraft terminal area operations and have been cited as the primary cause of several major aircraft accidents. A simple sensor, potentially having application to the wind-shear problem, has been developed to rapidly measure aircraft total energy relative to the air mass. Combining this sensor with either a variometer or a rate-of-climb indi- cator provides a total energy-rate system which has been successfully applied in soaring flight. The measured rate of change of aircraft energy can poten- tially be used on display/control systems of powered aircraft to reduce glide- slope deviations caused by wind shear. This paper describes the experimental flight configuration and evaluations of the energy-rate system. Two mathematical models are developed: the first describes operation of the energy probe in a linear design region and the second model is for the nonlinear region. The calculated total energy rate is compared with measured signals for many different flight tests.
    [Show full text]
  • Numerical and Experimental Real Scale Modelling of Aerodynamic Coefficients for an HighPerformance Vehicle
    Congress on Numerical Methods in Engineering 2011 Coimbra, 14 to 17 June, 2011 © APMTAC, Portugal, 2011 NUMERICAL AND EXPERIMENTAL REAL SCALE MODELLING OF AERODYNAMIC COEFFICIENTS FOR AN HIGH-PERFORMANCE VEHICLE José C. Páscoa 1*, elson M. Mendes 1, Francisco P. Brójo 2, Fernando C. Santos 1, Paulo O. Fael 1 1: Electromechanical Eng. Department 2: Aerospace Sciences Department Universidade da Beira Interior, Faculdade de Engenharia Calçada Fonte do Lameiro, 6200-001, Covilhã, Portugal e-mail: {pascoa,brojo, bigares, pfael}@ubi.pt; [email protected] Keywords: numerical modelling, experimental modelling, vehicle aerodynamics Abstract. umerical modelling of high-performance road vehicles, in low-Re number conditions, undergoes a lack of accuracy usually associated to the use of RAS turbulence closures in these flow regimes. The usual assumption of developing experimental testing in reduced scale models hinders design targets, in view of the limitations associated to viscous scale effects. Herein we present an on-road real scale experimental testing, and the corresponding numerical modelling of the real geometry, for the UBI Eco-marathon vehicle. Aerodynamic coefficients are sought experimentally by towing the vehicle, while rolling resistance is obtained by shielding the vehicle to eliminate aerodynamic effects. An initial calibration of the numerical code is carried out using the Ahmed body test case as a benchmark. A detailed analysis of mesh influence on numerical accuracy is accomplished. By using this knowledge base, a numerical computation is performed for the high-performance vehicle. The computed flowfield results, obtained for the UBI Eco-marathon vehicle, provide valuable indications on how to improve the aerodynamic behaviour. These conclusions are now being incorporated in the new version of the vehicle.
    [Show full text]
  • MAE 449 – Aerospace Laboratory Aerodynamics Lab 2
    MAE 449 – Aerospace Laboratory Aerodynamics Lab 2 AERODYNAMICS LAB 2 – AIRFOIL PRESSURE MEASUREMENTS NACA 0012 1 Objective To use pressure distribution to determine the aerodynamic lift and drag forces experienced by a NACA 0012 airfoil placed in a uniform free-stream velocity. 2 Materials and Equipment • UAH 1-ft x 1-ft open circuit wind tunnel • Traversing mechanism • Pitot-static probe • Molded epoxy NACA 0012 airfoil section with a 4-inch chord and an array of 9 pressure taps along its upper surface • Digital pressure transducer • Data Acquisition (DAQ) Box 3 Background 3.1 Airfoil Lift and Drag We can determine the net fluid mechanic force acting on an immersed body using pressure measurements on the surface and in the viscous, separated wake. The net force can be resolved into two components: the lift component, which is normal to the freestream velocity vector; and the drag component, which is parallel to the freestream velocity as shown on Figure 1. LIFT U∞ DRAG Figure 1 - Aerodynamic Force on an Airfoil We often express these forces in non-dimensional coefficient form F CF = , (1) ⎛⎞1 2 ⎜⎟ρVA∞ REF ⎝⎠2 where F can be the lift (L) or drag (D) force, and AREF is a specified reference area. For two- dimensional bodies the force is per unit span (or width), or the area is determined with a unit span. 1/8 MAE 449 – Aerospace Laboratory Aerodynamics Lab 2 3.2 Governing Equations Ideal Gas Law At standard conditions, air behaves very much like an ideal gas (the intermolecular forces are negligible). As a result, we can express relation between the pressure, p, the density, ρ, the temperature, T, and a specific gas constant, R ( for air, R = 287 J/(kg K)), as pRT= ρ .
    [Show full text]
  • Mode Pressure Coefficient Maps As an Alternative to Mean
    computation Article Mode Pressure Coefficient Maps as an Alternative to Mean Pressure Coefficient Maps for Non-Gaussian Processes: Hyperbolic Paraboloid Roofs as Cases of Study Alberto Viskovic Department of Engineering and Geology, G. D’Annunzio University, viale Pindaro 42, 65127 Pescara, Italy; [email protected] Received: 9 November 2018; Accepted: 10 December 2018; Published: 12 December 2018 Abstract: Wind tunnel experiments are necessary for geometries that are not investigated by codes or that are not generally and parametrically investigated by literature. One example is the hyperbolic parabolic shape mostly used for cable net roofs, for which codes do not provide pressure coefficients and literature only gives mean, maxima, and minima pressure coefficient maps. However, most of pressure series acquired in wind tunnels on the roof are not Gaussian processes and, for this reason, the mean values are not precisely representative of the process. The paper investigates the ratio between mean and mode of pressure coefficient series acquired in wind tunnels on buildings covered with hyperbolic paraboloid roofs with square plans. Mode pressure coefficient maps are given as an addition to traditional pressure coefficient maps. Keywords: wind tunnel tests; non-Gaussian processes; pressure coefficient; mode; hyperbolic paraboloid roofs 1. Introduction Wind tunnel tests are necessary for structure sensitivity to wind action regarding shapes not discussed in technical codes or literature. This is the case of the structures with hyperbolic paraboloid shapes mostly used for roofs made of cable nets and concrete shells, widely used, for example, in sport arenas, meeting rooms, or music halls [1–4]. The shortcoming relates the generalization and parametrization of aerodynamic coefficients to the widest number of geometries derived from the hyperbolic paraboloid.
    [Show full text]
  • Analysis of Total Energy Probes for Sailplane Application N Aucamp
    Analysis of total energy probes for sailplane application N Aucamp orcid.org/0000-0002-2394-5651 Dissertation submitted in fulfilment of the requirements for the degree Master of Engineering in Mechanical Engineering at the North-West University Supervisor: Dr JJ Bosman Graduation May 2018 Student number: 22122486 ABSTRACT Sailplane manufacturers who strive to design and build the best competition sailplanes in the world try to outwit their competitors through improved gliding performance. Although significant effort is made to make the design as sleek as theoretically possible, the external sensors needed to operate the flight instruments diminish these efforts. The sensors cause the predominantly laminar boundary layer that forms on the aerodynamic surfaces of the sailplane where they are installed to prematurely transition to the turbulent boundary layer, creating parasitic drag. The dissertation aims to identify the possibility of reducing this drag using the total energy probe on the JS-1C Revelation sailplane manufactured by Jonker Sailplanes (JS-1C) as a baseline. Possible total energy probe designs, as well as other external sensors compatible with the JS-1C, were applied to different parts of the sailplane to determine the most optimum sensor selection and arrangement that would promote parasitic drag reduction. The combination of a total energy probe design applied to the sides of the fuselage as protrusions on the skin, along with the pitot-static probe installed on the tip of the horizontal tail plane, would induce nearly 80 % less drag than that of the current total energy probe. The design required further refinement to ensure uniform pressure drop changes during pitch manoeuvres and insensitivity to pitch and sideslip manoeuvres.
    [Show full text]
  • Wind Pressure Coefficient and Wind Velocity Around Buildings in High Density Block of Metropolis for Natural Ventilation Design
    Wind Pressure Coefficient and Wind Velocity around Buildings in High Density Block of Metropolis for Natural Ventilation Design Toshio Yamanaka*1, Eunsu Lim2, Tomohiro Kobayashi3, Toshihiko Sajima4, and Kanji Fukuyama3 1 Osaka University 2 Toyo University 2-1 Yamadaoka, 2100 Kujirai, Suita-shi, Osaka, 565-0871 Japan Kawagoe-shi, Saitama 350-8585, Japan Presenting and corresponding author [email protected] 3 Osaka University 4 Takenaka Corporation 2-1 Yamadaoka, 4-1-13 Honmachi Suita-shi, Osaka, 565-0871 Japan Osaka-shi, Osaka, 541-0031 Japan ABSTRACT The ventilative cooling by natural ventilation is important technology for the buildings in urban area for the sake of energy saving and BCP (Business Continuity Plan). In fact, a large number of high-rise buildings in urban area in Japanese metropolises are equipped with natural ventilation apparatus such as openings and chimneys or shafts. In design stage of the building, generally, building engineers have to decide the size and number of ventilation devices, but it is not easy because the data of wind pressure coefficient are not ready for engineers to use easily especially for the buildings in high density block of metropolis. In designing the natural ventilation devices, a wind guide or a wind vane sticking out from walls of the building is useful device to introduce natural wind from outside into the rooms. The wind velocity around the building, however, is essential to predict the performance of these devices. Here, the wind velocity around building depends on the distance between buildings, height above ground and wind speed of approach flow and so on.
    [Show full text]