Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 5, May - 2015 Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil Haci Sogukpinar Ismail Bozkurt Department of Energy Systems Engineering, Department of Mechanical Engineering, Faculty of Technology, University of Adiyaman, Faculty of Engineering, University of Adiyaman, Adiyaman 02040, Turkey, Adiyaman 02040, Turkey.
[email protected] [email protected] Abstract—Wind energy is an important source examined. Gharali and Johnson [4] simulated an to meet future energy needs. Therefore, oscillating free stream over a stationary S809 airfoil investigations on wind power technology are numerically by using ANSYS Fluent for comparison the progressing rapidly. In this study, numerical laminar-turbulent transition with the realizable k–, simulation of airfoil was conducted to determine SST and k–w models. Thumthae and Chitsomboon [5] optimum angle of attack for horizontal axis wind investigated the numerical simulation of horizontal axis turbine. This study simulates air flow around wind turbines with untwisted blade to determine the inclined NACA 632-215 airfoil using SST optimal angle of attack that produces the highest turbulence model. Lift, drag coefficient, lift to drag power output. The computational results of the 12⁰ ratio and power coefficient around the airfoil were pitch was compared favorably with the field calculated and compared with different velocity. experimental data of The National Renewable With the increasing of wind velocity, lift and drag Laboratory. Lee et. al. [6] evaluated the performance coefficient increases and maximum lift to drag of a blade with blunt airfoil which was adapted at the ratio starts to increase then degreases again.