Laboratory 2

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory 2 13.012 Hydrodynamics for Ocean Engineers Lab #2 13.012 Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2002 Laboratory #2: Hydrostatic and Dynamic Pressure Measurements 2.1 INTRODUCTION Pressure in a fluid is defined as a normal force per unit area and has the dimensions of [Force/Length2] = [M/(TL)]. Fluid pressure exists whether the fluid is at rest or in motion. Hydrostatic pressure, the pressure resulting from a stationary fluid, and dynamic pressure, that arising from a moving fluid, are the subject of today's laboratory exercise. HYDROSTATIC PRESSURE In a static fluid, the forces acting on a small elemental fluid volume are a combination of the forces due to pressures exerted on the element from its surroundings and the force resulting from gravity acting on the element. As a result pressure variations only result in the vertical direction: dp dp dp = −ρg = 0 = 0 dz dx dy where ρ is the fluid density and g is the gravitational constant. A Right hand coordinate system is chosen such that z is positive in the direction opposite to gravity. The above equation can be integrated to yield the hydrostatic equation: ∆p = ρg(∆z) Examining this equation we can deduce that the pressure in a fluid will remain constant at all points at a given depth (unless the fluid density was to change - for example in the presence of higher salinity). When measuring pressure in a fluid, the hydrostatic equation comes in very handy. Measurement devices such as a manometer are used to measure pressure relative to a reference pressure (most likely atmospheric pressure). Such measured pressures are version 1.4 updated 10/17/2002 -1- 2002, aht 13.012 Hydrodynamics for Ocean Engineers Lab #2 referred to as gage pressures since they are relative to another pressure. The absolute pressure in the fluid can be found by adding the reference pressure to the gage pressure: pabs = pref + pgage BERNOULLI’S EQUATION P + ½ ρ V2 + ρgz = constant Where the dynamic pressure is 1/2ρV2 and the hydrostatic component is ρgz. The pressure at the point where the flow directly impinges on a body is called the stagnation pressure. This is also referred to as the total pressure on the body. Using Bernoulli’s equation along a horizontal streamline (z∞ = zo) we can get a relation for the total pressure as a sum of the static pressure in the fluid and the dynamic pressure: Po = P∞ + ½ ρV2 P_total = P_static + P_dynamic = constant along a streamline! The coefficient of pressure on the cylinder can be written as Po − P∞ C p = 1 2 2 ρV CYLINDER DRAG FORCE: And the force on the cylinder (DRAG) is attributed to the flow over the body and the pressure differential over the cylinder. F= ∫∫ p nˆ ds The coefficient of drag (non-dimensional drag) can be written in a similar fashion to the 2 pressure coefficient – as a ratio of the drag force, Fd, to the dynamic pressure, ½ ρV , times the cylinder diameter, D: Fd Cd = 1 2 2 ρV D version 1.4 updated 10/17/2002 -2- 2002, aht 13.012 Hydrodynamics for Ocean Engineers Lab #2 The velocity V is taken as the freestream velocity, and the Drag force is a force per unit length of the cylinder. This coefficient is termed the “sectional drag coefficient” since it related to only a small section of the cylinder length. For a uniform diameter cylinder this Cd is constant across the length! 2.2 BEFORE STARTING 1. Read the ENTIRE laboratory assignment handout BEFORE coming to lab. 2. Record the Ambient temperature and pressure 3. Listen to the lab instructor’s briefing. 2.3 KEEPING IN MIND THE LAB-WRITE UP 1. Complete all the exercises in Bold throughout this lab handout in addition to the questions at the end. 2. Take care to discuss your sources of error and estimate any error that occurred in calibration or data taking. 3. Briefly discuss each of the plots (1-2 sentences). 2.4 EXPERIMENTAL TASKS The experimental procedure for this laboratory is discussed below. Please read this section carefully before commencing the exercises. If you have questions about the laboratory procedures please ask your instructor. Pressure Transducers Calibration The first step of this lab will be to calibrate the pressure sensors: The pressure sensors are differential pressure transducers that measure the “difference” in pressure between the inlet and outlet. In order to calibrate the transducers each side is connected to a water column mounted on the lab wall to the left of the tunnel. The gauges are connected to a data acquisition system that will display the pressure reading from the gauge in VOLTS. TO CALIBRATE: Apply a known pressure differential to the transducer version 1.4 updated 10/17/2002 -3- 2002, aht 13.012 Hydrodynamics for Ocean Engineers Lab #2 o To calculate the applied pressure differential: measure the difference in height of the water columns and apply the hydrostatic equation to find the pressure. o Record this value (or at least ∆h) to use in your calibration curve Record the output VOLTAGE on the readout that corresponds with the applied pressure differential Repeat the above steps (4-5 times) by varying the water column height on one side by 0.5m increments. Plot the applied PRESSURE, in Pascals, VERSUS the VOLTAGE to obtain a calibration curve. Discuss the error in your calibration This calibration curve will be used throughout the lab (for the write up) to convert the voltage readings from the transducers to actual pressure values. While doing this remember to make notes as to potential sources of error in these measurements? Is it easy to read the height of the water column – is it a steady reading? Do the voltage readouts fluctuate? It is good to know your error in calibration as it will propagate throughout your calculations. IMPORTANT NOTE: The tunnel gauge pressure transducer has only one port as the other is referenced to absolute zero. Dynamic Pressure vs. Tunnel Speed The nest step will be to measure the effects of flow speed on dynamic pressure. The lab instructor will you reconnect the pressure gauges to proper location on the lab setup after the calibration step. Two gauges will be used: 1. Measures the pressure in the test section relative to absolute zero (absolute pressure). 2. Is connected to a Pitot tube!! This gauge measures the difference between the total pressure at the inlet of the Pitot tube and the reference pressure at the static pressure port similar to the setup discussed in class. This gauge measures the dynamic pressure as: 2 P_dynamic = ½ ρV = Po-P∞ = P_total + P_static. MEASURE THE PRESSURE AS A FUNCTION OF TUNNEL SPEED: Measure the pressure at 4-5 tunnel speeds by increasing the tunnel impeller RPM up to 200 rpm Max. version 1.4 updated 10/17/2002 -4- 2002, aht 13.012 Hydrodynamics for Ocean Engineers Lab #2 Use the calibration chart given for speed vs. impeller RPM to calculate the flow speed in the test section Record the tunnel impeller speed and the ambient and pitot tube pressures. Plot the Pitot tube pressure vs. RPM, compare this with a direct calculation of dynamic pressure using the calibrated tunnel speed for each RPM. Pressure Measurement around a Cylinder in a flow stream In this final part of the lab the pressure around the cylinder will be measured using a static pressure port embedded in the cylinder. The cylinder can be rotated through 360 degrees in order to measure the pressure around the cylinder: Pressure tap Rotation direction U ∞ α The cylinder is mounted such that it can be rotated from outside the tunnel so that the pressure port can measure the cylinder static pressure at angles around the cylinder. A protractor is attached to the cylinder so that the rotated angle can be recorded. MEASURE THE PRESSURE AROUND THE CYLINDER: Set the tunnel impeller RPM to 200 rpm. Set the cylinder angle to zero (zero angle will be with the port facing directly upstream). Vary the angle of the cylinder in 10 degree increments for a full 360 degree rotation. At each angle stop and record the pressure gauges. Be sure to record the tunnel speed as well as it can fluctuate!!! Plot the pressure recorded (in Pascals) versus angle around the cylinder version 1.4 updated 10/17/2002 -5- 2002, aht 13.012 Hydrodynamics for Ocean Engineers Lab #2 2.5 POST LAB WRITE-UP For this lab assume the density for water is 998 kg/m3 and acceleration due to gravity is 9.82 m/s2. A. Pressure Transducers Calibration: a. Using the hydrostatic pressure equation compute the applied calibration pressure at each calibration point. b. Plot the output voltage for each pressure gauge as a function of this applied hydrostatic pressure. c. Fit a line to the dataset (using MATLAB or Excel, by hand, etc.) to obtain the sensitivity (slope) for each gauge – this will determine how many Pascals per volt are there for each gauge. B. Dynamic Pressure vs. Tunnel Speed a. Plot the measured dynamic pressure vs. tunnel RPM. b. Use Bernoulli’s equation to calculate the dynamic pressure expected at each tunnel RPM based on the velocity/RPM calibration handed out in lab. c. Compare these two plots – is there a difference? If so, what could a source of error be? d. Using the cylinder diameter as the length scale (D = 0.0254m) what is the Reynold's number for this cylinder flow at 200 RPM impeller speed? (Kinematic viscosity for water is ν = 10-6 m2/s).
Recommended publications
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • CHAPTER TWO - Static Aeroelasticity – Unswept Wing Structural Loads and Performance 21 2.1 Background
    Static aeroelasticity – structural loads and performance CHAPTER TWO - Static Aeroelasticity – Unswept wing structural loads and performance 21 2.1 Background ........................................................................................................................... 21 2.1.2 Scope and purpose ....................................................................................................................... 21 2.1.2 The structures enterprise and its relation to aeroelasticity ............................................................ 22 2.1.3 The evolution of aircraft wing structures-form follows function ................................................ 24 2.2 Analytical modeling............................................................................................................... 30 2.2.1 The typical section, the flying door and Rayleigh-Ritz idealizations ................................................ 31 2.2.2 – Functional diagrams and operators – modeling the aeroelastic feedback process ....................... 33 2.3 Matrix structural analysis – stiffness matrices and strain energy .......................................... 34 2.4 An example - Construction of a structural stiffness matrix – the shear center concept ........ 38 2.5 Subsonic aerodynamics - fundamentals ................................................................................ 40 2.5.1 Reference points – the center of pressure..................................................................................... 44 2.5.2 A different
    [Show full text]
  • Overview of Pressure Coefficient Data in Building Energy Simulation and Airflow Network Programs
    PREPRINT: Costola D, Blocken B, Hensen JLM. 2009. Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment. In press. Overview of pressure coefficient data in building energy simulation and airflow network programs D. Cóstola*, B. Blocken, J.L.M. Hensen Building Physics and Systems, Eindhoven University of Technology, the Netherlands Abstract Wind pressure coefficients (Cp) are influenced by a wide range of parameters, including building geometry, facade detailing, position on the facade, the degree of exposure/sheltering, wind speed and wind direction. As it is practically impossible to take into account the full complexity of pressure coefficient variation, Building Energy Simulation (BES) and Air Flow Network (AFN) programs generally incorporate it in a simplified way. This paper provides an overview of pressure coefficient data and the extent to which they are currently implemented in BES-AFN programs. A distinction is made between primary sources of Cp data, such as full- scale measurements, reduced-scale measurements in wind tunnels and computational fluid dynamics (CFD) simulations, and secondary sources, such as databases and analytical models. The comparison between data from secondary sources implemented in BES-AFN programs shows that the Cp values are quite different depending on the source adopted. The two influencing parameters for which these differences are most pronounced are the position on the facade and the degree of exposure/sheltering. The comparison of Cp data from different sources for sheltered buildings shows the largest differences, and data from different sources even present different trends. The paper concludes that quantification of the uncertainty related to such data sources is required to guide future improvements in Cp implementation in BES-AFN programs.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • Investigation of Sailing Yacht Aerodynamics Using Real Time Pressure and Sail Shape Measurements at Full Scale
    18th Australasian Fluid Mechanics Conference Auckland, New Zealand 3-7 December 2012 Investigation of sailing yacht aerodynamics using real time pressure and sail shape measurements at full scale F. Bergsma1,D. Motta2, D.J. Le Pelley2, P.J. Richards2, R.G.J. Flay2 1Engineering Fluid Dynamics,University of Twente, Twente, Netherlands 2Yacht Research Unit, University of Auckland, Auckland, New Zealand Abstract VSPARS for sail shape measurement The steady and unsteady aerodynamic behaviour of a sailing yacht Visual Sail Position and Rig Shape (VSPARS) is a system that is investigated in this work by using full-scale testing on a Stewart was developed at the YRU by Le Pelley and Modral [7]; it is 34. The aerodynamic forces developed by the yacht in real time designed to measure sail shape and can handle large perspective are derived from knowledge of the differential pressures across the effects and sails with large curvatures using off-the-shelf cameras. sails and the sail shape. Experimental results are compared with The shape is recorded using several coloured horizontal stripes on numerical computation and good agreement was found. the sails. A certain number of user defined point locations are defined by the system, together with several section characteristics Introduction such as camber, draft, twist angle, entry and exit angles, bend, sag, Sail aerodynamics is an open field of research in the scientific etc. All these outputs are then imported into the FEPV system and community. Some of the topics of interest are knowledge of the appropriately post-processed. The number of coloured stripes used flying sail shape, determination of the pressure distribution across is arbitrary, but it is common practice to use 3-4 stripes per sail.
    [Show full text]
  • Introduction
    CHAPTER 1 Introduction "For some years I have been afflicted with the belief that flight is possible to man." Wilbur Wright, May 13, 1900 1.1 ATMOSPHERIC FLIGHT MECHANICS Atmospheric flight mechanics is a broad heading that encompasses three major disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past each of these subjects was treated independently of the others. However, because of the structural flexibility of modern airplanes, the interplay among the disciplines no longer can be ignored. For example, if the flight loads cause significant structural deformation of the aircraft, one can expect changes in the airplane's aerodynamic and stability characteristics that will influence its performance and dynamic behavior. Airplane performance deals with the determination of performance character- istics such as range, endurance, rate of climb, and takeoff and landing distance as well as flight path optimization. To evaluate these performance characteristics, one normally treats the airplane as a point mass acted on by gravity, lift, drag, and thrust. The accuracy of the performance calculations depends on how accurately the lift, drag, and thrust can be determined. Flight dynamics is concerned with the motion of an airplane due to internally or externally generated disturbances. We particularly are interested in the vehicle's stability and control capabilities. To describe adequately the rigid-body motion of an airplane one needs to consider the complete equations of motion with six degrees of freedom. Again, this will require accurate estimates of the aerodynamic forces and moments acting on the airplane. The final subject included under the heading of atmospheric flight mechanics is aeroelasticity.
    [Show full text]
  • How Do Airplanes
    AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. How Do Airplanes Fly? Airplanes – from airliners to fighter jets and just about everything in between – are such a normal part of life in the 21st century that we take them for granted. Yet even today, over a century after the Wright Brothers’ first flights, many people don’t know the science of how airplanes fly. It’s simple, really – it’s all about managing airflow and using something called Bernoulli’s principle. GRADES K-2 Do you know what part of an airplane lets it fly? The answer is the wings. As air flows over the wings, it pulls the whole airplane upward. This may sound strange, but think of the way the sail on a sailboat catches the wind to move the boat forward. The way an airplane wing works is not so different. Airplane wings have a special shape which you can see by looking at it from the side; this shape is called an airfoil. The airfoil creates high-pressure air underneath the wing and low-pressure air above the wing; this is like blowing on the bottom of the wing and sucking upwards on the top of the wing at the same time. As long as there is air flowing over the wings, they produce lift which can hold the airplane up. You can have your students demonstrate this idea (called Bernoulli’s Principle) using nothing more than a sheet of paper and your mouth.
    [Show full text]
  • Richard Lancaster [email protected]
    Glider Instruments Richard Lancaster [email protected] ASK-21 glider outlines Copyright 1983 Alexander Schleicher GmbH & Co. All other content Copyright 2008 Richard Lancaster. The latest version of this document can be downloaded from: www.carrotworks.com [ Atmospheric pressure and altitude ] Atmospheric pressure is caused ➊ by the weight of the column of air above a given location. Space At sea level the overlying column of air exerts a force equivalent to 10 tonnes per square metre. ➋ The higher the altitude, the shorter the overlying column of air and 30,000ft hence the lower the weight of that 300mb column. Therefore: ➌ 18,000ft “Atmospheric pressure 505mb decreases with altitude.” 0ft At 18,000ft atmospheric pressure 1013mb is approximately half that at sea level. [ The altimeter ] [ Altimeter anatomy ] Linkages and gearing: Connect the aneroid capsule 0 to the display needle(s). Aneroid capsule: 9 1 A sealed copper and beryllium alloy capsule from which the air has 2 been removed. The capsule is springy Static pressure inlet and designed to compress as the 3 pressure around it increases and expand as it decreases. 6 4 5 Display needle(s) Enclosure: Airtight except for the static pressure inlet. Has a glass front through which display needle(s) can be viewed. [ Altimeter operation ] The altimeter's static 0 [ Sea level ] ➊ pressure inlet must be 9 1 Atmospheric pressure: exposed to air that is at local 1013mb atmospheric pressure. 2 Static pressure inlet The pressure of the air inside 3 ➋ the altimeter's casing will therefore equalise to local 6 4 atmospheric pressure via the 5 static pressure inlet.
    [Show full text]
  • Introduction to Aerospace Engineering
    Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering Aerodynamics 11&12 Prof. H. Bijl ir. N. Timmer 11 & 12. Airfoils and finite wings Anderson 5.9 – end of chapter 5 excl. 5.19 Topics lecture 11 & 12 • Pressure distributions and lift • Finite wings • Swept wings 3 Pressure coefficient Typical example Definition of pressure coefficient : p − p -Cp = ∞ Cp q∞ upper side lower side -1.0 Stagnation point: p=p t … p t-p∞=q ∞ => C p=1 4 Example 5.6 • The pressure on a point on the wing of an airplane is 7.58x10 4 N/m2. The airplane is flying with a velocity of 70 m/s at conditions associated with standard altitude of 2000m. Calculate the pressure coefficient at this point on the wing 4 2 3 2000 m: p ∞=7.95.10 N/m ρ∞=1.0066 kg/m − = p p ∞ = − C p Cp 1.50 q∞ 5 Obtaining lift from pressure distribution leading edge θ V∞ trailing edge s p ds dy θ dx = ds cos θ 6 Obtaining lift from pressure distribution TE TE Normal force per meter span: = θ − θ N ∫ pl cos ds ∫ pu cos ds LE LE c c θ = = − with ds cos dx N ∫ pl dx ∫ pu dx 0 0 NN Write dimensionless force coefficient : C = = n 1 ρ 2 2 Vc∞ qc ∞ 1 1 p − p x 1 p − p x x = l ∞ − u ∞ C = ()C −C d Cn d d n ∫ pl pu ∫ q c ∫ q c 0 ∞ 0 ∞ 0 c 7 T=Lsin α - Dcosα N=Lcos α + Dsinα L R N α T D V α = angle of attack 8 Obtaining lift from normal force coefficient =α − α =α − α L Ncos T sin cl c ncos c t sin L N T =cosα − sin α qc∞ qc ∞ qc ∞ For small angle of attack α≤5o : cos α ≈ 1, sin α ≈ 0 1 1 C≈() CCdx − () l∫ pl p u c 0 9 Example 5.11 Consider an airfoil with chord length c and the running distance x measured along the chord.
    [Show full text]
  • Activities on Dynamic Pressure
    Activities on Dynamic Pressure Sari Saxholm Madrid and Tres Cantos, Spain 15 – 18 May 2017 Dynamic Measurements • Dynamic measurements are widely performed as a part of process control, manufacturing, product testing, research and development activities • Measurements of dynamic pressure have especially a key role in several demanding applications, e.g., in automotive, marine and turbine engines • However, if the sensors are calibrated with static techniques the sensor behavior and reliability of measurement results cannot be ensured in dynamically changing conditions • To guarantee the reliability of results there is the need of traceable methods for dynamic characterization of sensors 2 11th EURAMET General Assembly - 15 - 18 May 2017 EMRP IND09 Dynamic • This EMRP Project (Traceable dynamic measurement of mechanical quantities) was an unique opportunity to develop a new field of metrology • The aim was to develop devices and methods to provide traceability for dynamic measurements of the mechanical quantities force, torque, and pressure • Measurement standards were successfully developed for dynamic pressures for limited range Development work has continued after this EMRP Project: because the awareness of dynamic measurements, and challenges related with the traceability issues, has increased. 3 11th EURAMET General Assembly - 15 - 18 May 2017 Industry Needs • To cover, e.g., the motor industry measurement range better • To investigate the effects of pressure pulse frequency and shape • To investigate the effects of measuring media
    [Show full text]
  • A New Dynamic Pressure Source for the Calibration of Pressure Transducers
    NBS Pubii - cations eferenc© sssfc in NBS TECHNICAL NOTE 914 *J *^AU Of U.S. DEPARTMENT OF COMMERCE/ National Bureau of Standards NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics 2 2 " 2 — Cryogenics — Electromagnetics — Time and Frequency . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Calculation of Optimum Angle of Attack to Determine Maximum Lift To
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 5, May - 2015 Calculation of Optimum Angle of Attack to Determine Maximum Lift to Drag Ratio of NACA 632-215 Airfoil Haci Sogukpinar Ismail Bozkurt Department of Energy Systems Engineering, Department of Mechanical Engineering, Faculty of Technology, University of Adiyaman, Faculty of Engineering, University of Adiyaman, Adiyaman 02040, Turkey, Adiyaman 02040, Turkey. [email protected] [email protected] Abstract—Wind energy is an important source examined. Gharali and Johnson [4] simulated an to meet future energy needs. Therefore, oscillating free stream over a stationary S809 airfoil investigations on wind power technology are numerically by using ANSYS Fluent for comparison the progressing rapidly. In this study, numerical laminar-turbulent transition with the realizable k–, simulation of airfoil was conducted to determine SST and k–w models. Thumthae and Chitsomboon [5] optimum angle of attack for horizontal axis wind investigated the numerical simulation of horizontal axis turbine. This study simulates air flow around wind turbines with untwisted blade to determine the inclined NACA 632-215 airfoil using SST optimal angle of attack that produces the highest turbulence model. Lift, drag coefficient, lift to drag power output. The computational results of the 12⁰ ratio and power coefficient around the airfoil were pitch was compared favorably with the field calculated and compared with different velocity. experimental data of The National Renewable With the increasing of wind velocity, lift and drag Laboratory. Lee et. al. [6] evaluated the performance coefficient increases and maximum lift to drag of a blade with blunt airfoil which was adapted at the ratio starts to increase then degreases again.
    [Show full text]