Bernoulli? Perhaps, but What About Viscosity?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics
Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics John D. Anderson Jr. Aeronautics Division, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA 1 INTRODUCTION 1 Introduction 1 2 Early Greek Science: Aristotle and Archimedes 2 As you read these words, there are millions of modern engi- neering devices in operation that depend in part, or in total, 3 DA Vinci’s Fluid Dynamics 2 on the understanding of fluid dynamics – airplanes in flight, 4 The Velocity-Squared Law 3 ships at sea, automobiles on the road, mechanical biomedi- 5 Newton and the Sine-Squared Law 5 cal devices, and so on. In the modern world, we sometimes take these devices for granted. However, it is important to 6 Daniel Bernoulli and the Pressure-Velocity pause for a moment and realize that each of these machines Concept 7 is a miracle in modern engineering fluid dynamics wherein 7 Henri Pitot and the Invention of the Pitot Tube 9 many diverse fundamental laws of nature are harnessed and 8 The High Noon of Eighteenth Century Fluid combined in a useful fashion so as to produce a safe, efficient, Dynamics – Leonhard Euler and the Governing and effective machine. Indeed, the sight of an airplane flying Equations of Inviscid Fluid Motion 10 overhead typifies the laws of aerodynamics in action, and it 9 Inclusion of Friction in Theoretical Fluid is easy to forget that just two centuries ago, these laws were Dynamics: the Works of Navier and Stokes 11 so mysterious, unknown or misunderstood as to preclude a flying machine from even lifting off the ground; let alone 10 Osborne Reynolds: Understanding Turbulent successfully flying through the air. -
The Bernoulli Edition the Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family
Bernoulli2005.qxd 24.01.2006 16:34 Seite 1 The Bernoulli Edition The Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family Edited on behalf of the Naturforschende Gesellschaft in Basel and the Otto Spiess-Stiftung, with support of the Schweizerischer Nationalfonds and the Verein zur Förderung der Bernoulli-Edition Bernoulli2005.qxd 24.01.2006 16:34 Seite 2 The Scientific Legacy Èthe Bernoullis' contributions to the theory of oscillations, especially Daniel's discovery of of the Bernoullis the main theorems on stationary modes. Johann II considered, but rejected, a theory of Modern science is predominantly based on the transversal wave optics; Jacob II came discoveries in the fields of mathematics and the tantalizingly close to formulating the natural sciences in the 17th and 18th centuries. equations for the vibrating plate – an Eight members of the Bernoulli family as well as important topic of the time the Bernoulli disciple Jacob Hermann made Èthe important steps Daniel Bernoulli took significant contributions to this development in toward a theory of errors. His efforts to the areas of mathematics, physics, engineering improve the apparatus for measuring the and medicine. Some of their most influential inclination of the Earth's magnetic field led achievements may be listed as follows: him to the first systematic evaluation of ÈJacob Bernoulli's pioneering work in proba- experimental errors bility theory, which included the discovery of ÈDaniel's achievements in medicine, including the Law of Large Numbers, the basic theorem the first computation of the work done by the underlying all statistical analysis human heart. -
Leonhard Euler: His Life, the Man, and His Works∗
SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St. -
Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured. -
Continuity Example – Falling Water
Continuity example – falling water Why does the stream of water from a tap get narrower as it falls? Hint: Is the water accelerating as it falls? Answer: The fluid accelerates under gravity so the velocity is higher down lower. Since Av = const (i.e. A is inversely proportional to v), the cross sectional area, and the radius, is smaller down lower Bernoulli’s principle Bernoulli conducted experiments like this: https://youtu.be/9DYyGYSUhIc (from 2:06) A fluid accelerates when entering a narrow section of tube, increasing its kinetic energy (=½mv2) Something must be doing work on the parcel. But what? Bernoulli’s principle resolves this dilemma. Daniel Bernoulli “An increase in the speed of an ideal fluid is accompanied 1700-1782 by a drop in its pressure.” The fluid is pushed from behind Examples of Bernoulli’s principle Aeroplane wings high v, low P Compressible fluids? Bernoulli’s equation OK if not too much compression. Venturi meters Measure velocity from pressure difference between two points of known cross section. Bernoulli’s equation New Concept: A fluid parcel of volume V at pressure P has a pressure potential energy Epot-p = PV. It also has gravitational potential energy: Epot-g = mgh Ignoring friction, the energy of the parcel as it flows must be constant: Ek + Epot = const 1 mv 2 + PV + mgh = const ) 2 For incompressible fluids, we can divide by volume, showing conservation of energy 1 density: ⇢v 2 + P + ⇢gh = const 2 This is Bernoulli’s equation. Bernoulli equation example – leak in water tank A full water tank 2m tall has a hole 5mm diameter near the base. -
Investigation of Sailing Yacht Aerodynamics Using Real Time Pressure and Sail Shape Measurements at Full Scale
18th Australasian Fluid Mechanics Conference Auckland, New Zealand 3-7 December 2012 Investigation of sailing yacht aerodynamics using real time pressure and sail shape measurements at full scale F. Bergsma1,D. Motta2, D.J. Le Pelley2, P.J. Richards2, R.G.J. Flay2 1Engineering Fluid Dynamics,University of Twente, Twente, Netherlands 2Yacht Research Unit, University of Auckland, Auckland, New Zealand Abstract VSPARS for sail shape measurement The steady and unsteady aerodynamic behaviour of a sailing yacht Visual Sail Position and Rig Shape (VSPARS) is a system that is investigated in this work by using full-scale testing on a Stewart was developed at the YRU by Le Pelley and Modral [7]; it is 34. The aerodynamic forces developed by the yacht in real time designed to measure sail shape and can handle large perspective are derived from knowledge of the differential pressures across the effects and sails with large curvatures using off-the-shelf cameras. sails and the sail shape. Experimental results are compared with The shape is recorded using several coloured horizontal stripes on numerical computation and good agreement was found. the sails. A certain number of user defined point locations are defined by the system, together with several section characteristics Introduction such as camber, draft, twist angle, entry and exit angles, bend, sag, Sail aerodynamics is an open field of research in the scientific etc. All these outputs are then imported into the FEPV system and community. Some of the topics of interest are knowledge of the appropriately post-processed. The number of coloured stripes used flying sail shape, determination of the pressure distribution across is arbitrary, but it is common practice to use 3-4 stripes per sail. -
Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time. -
Richard Lancaster [email protected]
Glider Instruments Richard Lancaster [email protected] ASK-21 glider outlines Copyright 1983 Alexander Schleicher GmbH & Co. All other content Copyright 2008 Richard Lancaster. The latest version of this document can be downloaded from: www.carrotworks.com [ Atmospheric pressure and altitude ] Atmospheric pressure is caused ➊ by the weight of the column of air above a given location. Space At sea level the overlying column of air exerts a force equivalent to 10 tonnes per square metre. ➋ The higher the altitude, the shorter the overlying column of air and 30,000ft hence the lower the weight of that 300mb column. Therefore: ➌ 18,000ft “Atmospheric pressure 505mb decreases with altitude.” 0ft At 18,000ft atmospheric pressure 1013mb is approximately half that at sea level. [ The altimeter ] [ Altimeter anatomy ] Linkages and gearing: Connect the aneroid capsule 0 to the display needle(s). Aneroid capsule: 9 1 A sealed copper and beryllium alloy capsule from which the air has 2 been removed. The capsule is springy Static pressure inlet and designed to compress as the 3 pressure around it increases and expand as it decreases. 6 4 5 Display needle(s) Enclosure: Airtight except for the static pressure inlet. Has a glass front through which display needle(s) can be viewed. [ Altimeter operation ] The altimeter's static 0 [ Sea level ] ➊ pressure inlet must be 9 1 Atmospheric pressure: exposed to air that is at local 1013mb atmospheric pressure. 2 Static pressure inlet The pressure of the air inside 3 ➋ the altimeter's casing will therefore equalise to local 6 4 atmospheric pressure via the 5 static pressure inlet. -
TOTAL ENERGY COMPENSATION in PRACTICE by Rudolph Brozel ILEC Gmbh Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002
TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected © ILEC GmbH, all rights reserved. Reproduction with the approval of ILEC GmbH only. FORWARD Rudolf Brozel and Juergen Schindler founded ILEC in 1981. Rudolf Brozel was the original designer of ILEC variometer systems and total energy probes. Sadly, Rudolph Brozel passed away in 1998. ILEC instruments and probes are the result of extensive testing over many years. More than 6,000 pilots around the world now use ILEC total energy probes. ILEC variometers are the variometer of choice of many pilots, for both competition and club use. Current ILEC variometers include the SC7 basic variometer, the SB9 backup variometer, and the SN10 flight computer. INTRODUCTION The following article is a summary of conclusions drawn from theoretical work over several years, including wind tunnel experiments and in-flight measurements. This research helps to explain the differences between the real response of a total energy variometer and what a soaring pilot would prefer, or the ideal behaviour. This article will help glider pilots better understand the response of the variometer, and also aid in improving an existing system. You will understand the semi-technical information better after you read the following article the second or third time. THE INFLUENCE OF ACCELERATION ON THE SINK RATE OF A SAILPLANE AND ON THE INDICATION OF THE VARIOMETER. Astute pilots may have noticed when they perform a normal pull-up manoeuvre, as they might to enter a thermal; the TE (total energy) variometer first indicates a down reading, whereas the non-compensated variometer would rapidly go to the positive stop. -
Fluid Mechanics Policy Planning and Learning
Science and Reactor Fundamentals – Fluid Mechanics Policy Planning and Learning Fluid Mechanics Science and Reactor Fundamentals – Fluid Mechanics Policy Planning and Learning TABLE OF CONTENTS 1 OBJECTIVES ................................................................................... 1 1.1 BASIC DEFINITIONS .................................................................... 1 1.2 PRESSURE ................................................................................... 1 1.3 FLOW.......................................................................................... 1 1.4 ENERGY IN A FLOWING FLUID .................................................... 1 1.5 OTHER PHENOMENA................................................................... 2 1.6 TWO PHASE FLOW...................................................................... 2 1.7 FLOW INDUCED VIBRATION........................................................ 2 2 BASIC DEFINITIONS..................................................................... 3 2.1 INTRODUCTION ........................................................................... 3 2.2 PRESSURE ................................................................................... 3 2.3 DENSITY ..................................................................................... 4 2.4 VISCOSITY .................................................................................. 4 3 PRESSURE........................................................................................ 6 3.1 PRESSURE SCALES ..................................................................... -
Fluids Lab 1 – Lecture Notes
Fluids Lab 1 – Lecture Notes 1. Bernoulli Equation 2. Pitot-Static Tube 3. Airspeed Measurement 4. Pressure Nondimensionalization References: Anderson 3.2-3.5, Denker 3.4 ( http://www.av8n.com/how/ ) Bernoulli Equation Definition For every point s along a streamline in frictionless flow with constant density ρ, the local speed V (s)= |V~ | and local pressure p(s) are related by the Bernoulli Equation 1 p + ρV 2 = p (1) 2 o This po is a constant for all points along the streamline, even though p and V may vary. This is illustrated in the plot of p(s) and po(s) along a streamline near a wing, for instance. 1ρ 2 2 V po p s s Standard terminology is as follows. p = static pressure 1 ρV 2 = dynamic pressure 2 po = stagnation pressure, or total pressure Also, a commonly-used shorthand for the dynamic pressure is 1 2 q ≡ ρV 2 so we can also write the Bernoulli equation in the following compact form. p + q = po 1 Uniform Upstream Flow Case Many practical flow situations have uniform flow somewhere upstream, with V~ (x, y, z)= V~∞ and p(x, y, z) = p∞ at every upstream point. This uniform flow can be either at rest with V~∞ ≃ 0 (as in a reservoir), or be moving with uniform velocity V~∞ =6 0 (as in a upstream wind tunnel section), as shown in the figure. V(x,y,z) V(x,y,z) p(x,y,z) p(x,y,z) V = 0 V = const. p = const. p = const. -
The Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family
The Collected Scientific Papers of the Mathematicians and Physicists of the Bernoulli Family Edited on behalf of the Naturforschende Gesellschaft in Basel and the Otto Spiess-Stiftung, with support of the Schweizerischer Nationalfonds and the Verein zur Förderung der Bernoulli-Edition The Scientific Legacy of the Bernoullis Modern science is predominantly based on the discoveries in the fields of mathematics and the natural sciences in the 17th and 18th centuries. Eight members of the Bernoulli family as well as the Bernoulli disciple Jacob Hermann made significant contributions to this development in the areas of mathematics, physics, engineering and medicine. Some of their most influential achievements may be listed as follows: • Jacob Bernoulli's pioneering work in probability theory, which included the discovery of the Law of Large Numbers, the basic theorem underlying all statistical analysis • Jacob's determination of the form taken by a loaded beam, the first attempt at a systematic formulation of elasticity theory • the calculus of variations, invented by Jacob and by his brother Johann. Variational principles are the basis of much of modern physics • the contributions of both Jacob and Johann to analysis, differential geometry and mechanics, which developed and disseminated Leibniz's calculus • the formulation of Newtonian mechanics in the differential form by which we know it today, pioneered by Jacob Hermann and by Johann I Bernoulli • Johann's work on hydrodynamics. Not well known until recently, it is now highly regarded by historians of physics • Daniel Bernoulli's energy theorem for stationary flow, universally used in hydrodynamics and aerodynamics, and his derivation of Boyle's law, which for the first time explains macroscopic properties of gases by molecular motion, thus marking the beginning of kinetic gas theory • the Bernoullis' contributions to the theory of oscillations, especially Daniel's discovery of the main theorems on stationary modes.