Richard Lancaster [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Richard Lancaster R.Lancaster@Carrotworks.Com Glider Instruments Richard Lancaster [email protected] ASK-21 glider outlines Copyright 1983 Alexander Schleicher GmbH & Co. All other content Copyright 2008 Richard Lancaster. The latest version of this document can be downloaded from: www.carrotworks.com [ Atmospheric pressure and altitude ] Atmospheric pressure is caused ➊ by the weight of the column of air above a given location. Space At sea level the overlying column of air exerts a force equivalent to 10 tonnes per square metre. ➋ The higher the altitude, the shorter the overlying column of air and 30,000ft hence the lower the weight of that 300mb column. Therefore: ➌ 18,000ft “Atmospheric pressure 505mb decreases with altitude.” 0ft At 18,000ft atmospheric pressure 1013mb is approximately half that at sea level. [ The altimeter ] [ Altimeter anatomy ] Linkages and gearing: Connect the aneroid capsule 0 to the display needle(s). Aneroid capsule: 9 1 A sealed copper and beryllium alloy capsule from which the air has 2 been removed. The capsule is springy Static pressure inlet and designed to compress as the 3 pressure around it increases and expand as it decreases. 6 4 5 Display needle(s) Enclosure: Airtight except for the static pressure inlet. Has a glass front through which display needle(s) can be viewed. [ Altimeter operation ] The altimeter's static 0 [ Sea level ] ➊ pressure inlet must be 9 1 Atmospheric pressure: exposed to air that is at local 1013mb atmospheric pressure. 2 Static pressure inlet The pressure of the air inside 3 ➋ the altimeter's casing will therefore equalise to local 6 4 atmospheric pressure via the 5 static pressure inlet. Atmospheric pressure 0 [ 3500ft ] ➌ 9 1 decreases with altitude. Atmospheric pressure: 890mb 2 As atmospheric pressure ➍ decreases the aneroid capsule expands, moving the 3 linkages and hence rotating Decrease in pressure the display needle(s). has caused aneroid 6 4 capsule to expand and 5 rotate the needle. [ Atmospheric pressure disturbances ] An aircraft moving through ➊ the atmosphere changes the pressure of the air surrounding it. This is how wings generate lift. Even the air inside the cockpit will not quite be at local atmospheric pressure. This means that care must ➋ be taken when trying to expose the altimeter's static pressure inlet to air that is at local atmospheric pressure. [ Static vents and altimeter pipework ] Static vents Altimeter When designing a glider, the engineers will try A pair of “static vent holes” ➊ to find a location on the fuselage where the ➋ are drilled into the fuselage at passing airflow exerts a pressure on the this location and connected to aircraft's surface that is close to local the altimeter's static pressure atmospheric. They do this using a combination inlet via a flexible plastic tube. of their experience, calculations and test This allows the air in the results. On a glider, such a point is often altimeter's casing to equalise located about half way down the tail boom. with local atmospheric. [ Barometric pressure subscale ] The adjustment knob on the ➊ front of an altimeter allows the pilot to dial in, on the Barometric pressure subscale barometric pressure subscale, the current atmospheric pressure at the altitude they wish to call 0ft. 0 9 1 For example they might dial in the current pressure at 8 2 sea level, or the current 985 pressure at ground level on a 990 particular airfield. 7 3 6 4 The knob adjusts the 5 ➋ linkages within the altimeter, such that when the atmospheric pressure around the aircraft matches Adjustment knob the setting on the subscale the altimeter will read 0ft. [ Air Speed Indicator (ASI) ] [ The Pitot tube ] Pitot tube: A tube, often mounted in the glider's nose, the open end of which is exposed directly to the oncoming airflow. [ Pitot tube characteristics ] When a glider is in flight, the Pitot tube ➊ oncoming air will try to flow into the [ Speed: 0kts ] open end of the Pitot tube. No oncoming airflow. Capsule pressure: 1013mb Connecting a capsule to the back E.g. sea level atmospheric ➋ end of the Pitot tube will mean that the air flowing in has nowhere to go. Capsule The pressure in the capsule will therefore rise until it is high enough to prevent any further air from [ Speed: 30kts ] entering. Capsule pressure: 1015mb Sea level atmospheric Increasing the airspeed of the glider + 2mb due to oncoming airflow ➌ will cause the force exerted by the oncoming air to rise. More air will therefore be able to push its way into the capsule and hence the pressure within the capsule will increase. [ Speed: 60kts ] Capsule pressure: 1019mb Sea level atmospheric The pressure inside the capsule + 6mb due to oncoming airflow ➍ will therefore increase as airspeed increases. [ ASI anatomy ] Display needle Linkages and gearing: Connect the diaphragm 50 capsule to the display needle. 40 60 70 Total (Pitot) Static pressure inlet pressure inlet 80 Diaphragm capsule: A capsule with elastic 10 90 properties that is 0 airtight except for its connection to the total pressure inlet. Like a balloon it will Enclosure: expand as the pressure inside it Airtight except for the static pressure increases above the inlet. Has a glass front through which pressure outside it. display needle can be viewed. [ ASI pipework ] Total pressure inlet Static pressure inlet Static vents ASI Pitot tube [ ASI operation ] In a stationary aircraft, the air 50 [ Speed 0kts ] ➊ throughout the ASI will have 40 60 equalised with local atmospheric pressure. The 70 diaphragm capsule will 1013mb 1013mb therefore be collapsed like a Atmospheric 80 Atmospheric deflated balloon and the pressure pressure needle will be displaying zero. 10 90 0 As airspeed increases, the ➋ pressure inside the 50 [ Speed 60kts ] diaphragm capsule will rise 40 60 above local atmospheric due to the force exerted down the Pitot tube by the oncoming 70 airflow. The capsule will 1019mb 1013mb therefore inflate like a 80 Atmospheric balloon, moving the linkages pressure and rotating the needle. 10 90 0 [ The effect of altitude on the ASI ] 50 Like pressure, air density 40 60 ➊ also decreases with altitude. 30 70 ASI of an aircraft flying at 60knots at sea level The ASI's diaphragm capsule 20 80 ➋ is calibrated to correctly 10 90 display airspeed when the air 0 that the aircraft is moving 50 through is of average sea 40 60 level density. 30 70 ASI of an aircraft flying at 10,000ft60knots atat 10,000ft60 knots Above sea level, due to the 20 80 ➌ lower air density, the build up 10 90 of pressure in the diaphragm 0 capsule will be lower than 50 the ASI expects it to be. The 40 60 ASI will therefore under read. 30 70 ASI of an aircraft flying at 60knots at 20,000ft The higher the altitude 20 80 ➍ above sea level the more 10 90 the ASI will under read. 0 [ TAS and IAS ] TAS: True Air Speed The true speed at which the aircraft is moving through the air. IAS: Indicated Air Speed The airspeed displayed on the ASI. At altitudes above sea level this will What is the point of an ASI that be lower than the true airspeed. isn't capable of displaying true airspeed at altitudes above sea level? We will attempt to answer this question over the next couple of slides... [ Flight dynamics, altitude and TAS ] The decrease in air density with ➊ altitude also affects a glider's flight dynamics. Altitude True airspeed (TAS) at which stall occurs in steady wings level flight For example, a glider that stalls ➋ at a true airspeed of 40knots in steady wings level flight at 1,000ft 40 knots 1,000ft, will stall at a true 10,000ft 46 knots airspeed of 54knots at 20,000ft. 20,000ft 54 knots Consider therefore the 30,000ft 64 knots ➌ inconvenience that this would cause if the ASI did actually 40,000ft 79 knots display true airspeed (TAS). The pilot would need to continuously Table 1: Illustration(+) showing how steady wings use quick reference cards to level flight stall speed is affected by altitude. look up the stall speed, best L/D (+) speed and min sink speed for Remember that different gliders stall at different speeds. This table is just an illustration. The figures for your glider the current altitude. Not a will be different, but the trend will be the same. particularly convenient thing to have to do while trying to fly. [ Flight dynamics, altitude and IAS ] Fortunately for the pilot, the ➊ amount by which the ASI under Altitude Indicated airspeed (IAS) at reads approximately cancels out which stall occurs in steady the air density related changes wings level flight to the glider's flight dynamics. 1,000ft 40 knots This means that if the indicated 10,000ft 40 knots * ➋ airspeed (IAS) at the point of stall at 1,000ft in steady wings 20,000ft 40 knots * level flight is 40knots. Then the indicated airspeed at 20,000ft at 30,000ft 40 knots * the point of the stall will also be 40knots. Despite the fact that 40,000ft 40 knots * the stall is actually occurring at a 14knot higher true airspeed. Table 2: Illustration(+) showing that the indicated airspeed (IAS) at which a glider stalls in steady wings level flight does not vary with altitude. The pilot therefore only needs to (+) ➌ remember one set of numbers Remember that different gliders stall at different speeds. This table is just an illustration. The IAS figure for your that will work at all altitudes. glider will be different. There is however one very * In reality, secondary effects will cause small variations as important exception... altitude increases. [ IAS and Vne ] The previous slide detailed how ➊ most of the flight characteristics Altitude Vne (IAS) of a glider (stall speed, best L/D speed etc.) occur at a particular indicated airspeed (IAS) 5,000ft 151 knots regardless of altitude.
Recommended publications
  • Pitot-Static System Blockage Effects on Airspeed Indicator
    The Dramatic Effects of Pitot-Static System Blockages and Failures by Luiz Roberto Monteiro de Oliveira . Table of Contents I ‐ Introduction…………………………………………………………………………………………………………….1 II ‐ Pitot‐Static Instruments…………………………………………………………………………………………..3 III ‐ Blockage Scenarios – Description……………………………..…………………………………….…..…11 IV ‐ Examples of the Blockage Scenarios…………………..……………………………………………….…15 V ‐ Disclaimer………………………………………………………………………………………………………………50 VI ‐ References…………………………………………………………………………………………….…..……..……51 Please also review and understand the disclaimer found at the end of the article before applying the information contained herein. I - Introduction This article takes a comprehensive look into Pitot-static system blockages and failures. These typically affect the airspeed indicator (ASI), vertical speed indicator (VSI) and altimeter. They can also affect the autopilot auto-throttle and other equipment that relies on airspeed and altitude information. There have been several commercial flights, more recently Air France's flight 447, whose crash could have been due, in part, to Pitot-static system issues and pilot reaction. It is plausible that the pilot at the controls could have become confused with the erroneous instrument readings of the airspeed and have unknowingly flown the aircraft out of control resulting in the crash. The goal of this article is to help remove or reduce, through knowledge, the likelihood of at least this one link in the chain of problems that can lead to accidents. Table 1 below is provided to summarize
    [Show full text]
  • Sept. 12, 1950 W
    Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2 Sheets-Sheet. INVENTOR. M/2 2.7aar alwg,57. A77OAMA). Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2. Sheets-Sheet 2 N 2 2 %/ NYSASSESSN S2,222,W N N22N \ As I, mtRumaIII-m- III It's EARAs i RNSITIE, 2 72/ INVENTOR, M247 aeawosz. "/m2.ATTORNEY. Patented Sept. 12, 1950 2,522,337 UNITED STATES ; :PATENT OFFICE 2,522,337 MACH METER Walter Angst, Manhasset, N. Y., assignor to Square D Company, Detroit, Mich., a corpora tion of Michigan Application December 9, 1944, Serial No. 567,431 3 Claims. (Cl. 73-182). is 2 This invention relates to a Mach meter for air plurality of posts 8. Upon one of the posts 8 are craft for indicating the ratio of the true airspeed mounted a pair of serially connected aneroid cap of the craft to the speed of sound in the medium sules 9 and upon another of the posts 8 is in which the aircraft is traveling and the object mounted a diaphragm capsuler it. The aneroid of the invention is the provision of an instrument s: capsules 9 are sealed and the interior of the cas-l of this type for indicating the Mach number of an . ing is placed in communication with the static aircraft in fight. opening of a Pitot static tube through an opening The maximum safe Mach number of any air in the casing, not shown. The interior of the dia craft is the value of the ratio of true airspeed to phragm capsule is connected through the tub the speed of sound at which the laminar flow of ing 2 to the Pitot or pressure opening of the Pitot air over the wings fails and shock Waves are en static tube through the opening 3 in the back countered.
    [Show full text]
  • Aviation Occurrence No 200403238
    ATSB TRANSPORT SAFETY INVESTIGATION REPORT Aviation Occurrence Report – 200403238 / 200404436 Final Abnormal airspeed indications En route from/to Brisbane Qld 31 August 2004 / 9 November 2004 Bombardier Aerospace DHC8-315 VH-SBJ / VH-SBW ATSB TRANSPORT SAFETY INVESTIGATION REPORT Aviation Occurrence Report 200403238 / 200404436 Final Abnormal airspeed indications En route from/to Brisbane Qld 31 August 2004 / 9 November 2004 Bombardier Aerospace DHC8-315 VH-SBJ / VH-SBW Released in accordance with section 25 of the Transport Safety Investigation Act 2003 - i - Published by: Australian Transport Safety Bureau Postal address: PO Box 967, Civic Square ACT 2608 Office location: 15 Mort Street, Canberra City, Australian Capital Territory Telephone: 1800 621 372; from overseas + 61 2 6274 6590 Accident and serious incident notification: 1 800 011 034 (24 hours) Facsimile: 02 6274 6474; from overseas + 61 2 6274 6474 E-mail: [email protected] Internet: www.atsb.gov.au © Commonwealth of Australia 2007. This work is copyright. In the interests of enhancing the value of the information contained in this publication you may copy, download, display, print, reproduce and distribute this material in unaltered form (retaining this notice). However, copyright in the material obtained from non- Commonwealth agencies, private individuals or organisations, belongs to those agencies, individuals or organisations. Where you want to use their material you will need to contact them directly. Subject to the provisions of the Copyright Act 1968, you must not make any other use of the material in this publication unless you have the permission of the Australian Transport Safety Bureau. Please direct requests for further information or authorisation to: Commonwealth Copyright Administration, Copyright Law Branch Attorney-General’s Department, Robert Garran Offices, National Circuit, Barton ACT 2600 www.ag.gov.au/cca - ii - CONTENTS THE AUSTRALIAN TRANSPORT SAFETY BUREAU .................................
    [Show full text]
  • Module-7 Lecture-29 Flight Experiment
    Module-7 Lecture-29 Flight Experiment: Instruments used in flight experiment, pre and post flight measurement of aircraft c.g. Module Agenda • Instruments used in flight experiments. • Pre and post flight measurement of center of gravity. • Experimental procedure for the following experiments. (a) Cruise Performance: Estimation of profile Drag coefficient (CDo ) and Os- walds efficiency (e) of an aircraft from experimental data obtained during steady and level flight. (b) Climb Performance: Estimation of Rate of Climb RC and Absolute and Service Ceiling from experimental data obtained during steady climb flight (c) Estimation of stick free and fixed neutral and maneuvering point using flight data. (d) Static lateral-directional stability tests. (e) Phugoid demonstration (f) Dutch roll demonstration 1 Instruments used for experiments1 1. Airspeed Indicator: The airspeed indicator shows the aircraft's speed (usually in knots ) relative to the surrounding air. It works by measuring the ram-air pressure in the aircraft's Pitot tube. The indicated airspeed must be corrected for air density (which varies with altitude, temperature and humidity) in order to obtain the true airspeed, and for wind conditions in order to obtain the speed over the ground. 2. Attitude Indicator: The attitude indicator (also known as an artificial horizon) shows the aircraft's relation to the horizon. From this the pilot can tell whether the wings are level and if the aircraft nose is pointing above or below the horizon. This is a primary instrument for instrument flight and is also useful in conditions of poor visibility. Pilots are trained to use other instruments in combination should this instrument or its power fail.
    [Show full text]
  • How to Make My Air Glide S Work Properly
    How to make my Air Glide S work properly Originally written by Horst Rupp. Many thanks to Richard Frawley who edited and retranslated this article into proper English. 2014/11/21. The basic prerequisite for the Air Glide S, in particular the AHRS part, to work properly so that the extraneous ‘noise’ (gusts, wind shifts, perturbations etc) can be removed is to ensure that it is set up correctly. The instrument is very sensitive and the installation needs to be done in a way that ensures that only the correct inputs are being sensed. Most legacy instrument installations take all pressures from probes at the rudder fin. And most unfortunately, many of them use the total energy (TE) pressure from the fin to feed in parallel a mass-measurement variometer with a capacity flask (in Germany mostly a Winter) and a pressure sensor probe variometer such as the Air Glide S (no capacity flask). There are many publications indicating the deterioration (mostly damping) of the pressure sensor probe measurements by the stream of air mass in and out of the capacity flask. So, it is obviously a somewhat bad idea to do that to your Air Glide S. This interference with a mass measuring instruments is certainly not compliant with the above mentioned basic prerequisite. Fortunately, the Air Glide S can be compensated by total pressure (called electronic compensation as opposed to TE compensation). This is a new feature of the Air Glide S arriving with V 1.1. Total pressure and TE pressure carry more or less (depends on quality of probe) the same information - but for the sign : Total pressure is static pressure PLUS pitot pressure, TE pressure is static pressure MINUS pitot pressure (probe compensation factor (~)-1).
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • AIRSPEED INDICATORS - ALTIMETERS WINTER 3-INCH ALTIMETERS WINTER 2-1/4 INCH Standard Precision Altimeters 4 FGH 10
    AIRSPEED INDICATORS - ALTIMETERS WINTER 3-INCH ALTIMETERS WINTER 2-1/4 INCH Standard Precision Altimeters 4 FGH 10. AIRSPEED INDICATORS Airtight, black plastic housing. Connection This precision instrument is enclosed in a via hose from static pressure sensor to hose CM compact housing and operates by means of a connector on rear. Kollsman window with measuring tube. This ensures high accuracy millibar scale, reading from 940 to 1050 even at very low speeds. EBF-series airspeed millibars. See scale drawing for installation indicators are available with a pitot tube and dimensions. static pressure connection. Weight 0.330 kg. Linear scale The 4 FGH 10 altimeter can be fitted with a Description Part No. Price WP scale ring. Winter 2-1/4 ASI 8020 EBF Various 10-05625 $374.00 Range 360 Degree Dial Description Part No. Price Winter 2-1/4 ASI 8022 EBF Various 10-05627 $374.00 Winter 3 Altimeter 4 FGH 10 1000-20000 FT MB 10-05621 $1,202.00 Range 360 Degree Dial Winter 3 Altimeter 4 FGH 10 1000-20000 FT INHG 10-05622 $1,198.00 ME Winter 2-1/4 ASI 8026 EBF Various 10-05629 $455.00 Range 510 Degree Dial Winter 2-1/4” ASI 7 FMS 213 10-05908 $603.00 Range 0 To 100 Knot 360 Dial WINTER 2-1/4 INCH ALTIMETERS The pressure-sensitive measuring element is HA WINTER 3 INCH a diaphragm capsule (aneroid capsule) which AIRSPEED INDICATORS reacts to the effect of changing air pressure This precision instrument is enclosed in a com- as the aircraft changes altitude.
    [Show full text]
  • Investigation of Sailing Yacht Aerodynamics Using Real Time Pressure and Sail Shape Measurements at Full Scale
    18th Australasian Fluid Mechanics Conference Auckland, New Zealand 3-7 December 2012 Investigation of sailing yacht aerodynamics using real time pressure and sail shape measurements at full scale F. Bergsma1,D. Motta2, D.J. Le Pelley2, P.J. Richards2, R.G.J. Flay2 1Engineering Fluid Dynamics,University of Twente, Twente, Netherlands 2Yacht Research Unit, University of Auckland, Auckland, New Zealand Abstract VSPARS for sail shape measurement The steady and unsteady aerodynamic behaviour of a sailing yacht Visual Sail Position and Rig Shape (VSPARS) is a system that is investigated in this work by using full-scale testing on a Stewart was developed at the YRU by Le Pelley and Modral [7]; it is 34. The aerodynamic forces developed by the yacht in real time designed to measure sail shape and can handle large perspective are derived from knowledge of the differential pressures across the effects and sails with large curvatures using off-the-shelf cameras. sails and the sail shape. Experimental results are compared with The shape is recorded using several coloured horizontal stripes on numerical computation and good agreement was found. the sails. A certain number of user defined point locations are defined by the system, together with several section characteristics Introduction such as camber, draft, twist angle, entry and exit angles, bend, sag, Sail aerodynamics is an open field of research in the scientific etc. All these outputs are then imported into the FEPV system and community. Some of the topics of interest are knowledge of the appropriately post-processed. The number of coloured stripes used flying sail shape, determination of the pressure distribution across is arbitrary, but it is common practice to use 3-4 stripes per sail.
    [Show full text]
  • [email protected] C/ Fruela, 6 Fax: +34 91 463 55 35 28011 Madrid (España) Notice
    CICIAIAIACAC COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL Report IN-015/2019 Incident involving a BOEING B-737-524, registration LY-KLJ, at the Getafe Air Base (Madrid) on 5 April 2019 GOBIERNO MINISTERIO DE ESPAÑA DE TRANSPORTES, MOVILIDAD Y AGENDA URBANA Edita: Centro de Publicaciones Secretaría General Técnica Ministerio de Transportes, Movilidad y Agenda Urbana © NIPO: 796-20-128-4 Diseño, maquetación e impresión: Centro de Publicaciones COMISIÓN DE INVESTIGACIÓN DE ACCIDENTES E INCIDENTES DE AVIACIÓN CIVIL Tel.: +34 91 597 89 63 E-mail: [email protected] C/ Fruela, 6 Fax: +34 91 463 55 35 http://www.ciaiac.es 28011 Madrid (España) Notice This report is a technical document that reflects the point of view of the Civil Aviation Accident and Incident Investigation Commission (CIAIAC) regarding the circumstances of the accident object of the investigation, and its probable causes and consequences. In accordance with the provisions in Article 5.4.1 of Annex 13 of the International Civil Aviation Convention; and with articles 5.5 of Regulation (UE) nº 996/2010, of the European Parliament and the Council, of 20 October 2010; Article 15 of Law 21/2003 on Air Safety and articles 1., 4. and 21.2 of Regulation 389/1998, this investigation is exclusively of a technical nature, and its objective is the prevention of future civil aviation accidents and incidents by issuing, if necessary, safety recommendations to prevent from their reoccurrence. The investigation is not pointed to establish blame or liability whatsoever, and it’s not prejudging the possible decision taken by the judicial authorities.
    [Show full text]
  • Study of the Pilot's Attention in the Cabin During the Flight Auxiliary Devices Such As Variometer, Turn Indicator with Crosswise Or Other
    Journal of KONES Powertrain and Transport, Vol. 25, No. 3 2018 ISSN: 1231-4005 e-ISSN: 2354-0133 DOI: 10.5604/01.3001.0012.4309 STUDY OF THE PILOT’S ATTENTION IN THE CABIN DURING THE FLIGHT Mirosław Adamski, Mariusz Adamski, Ariel Adamski Polish Air Force Academy, Department of Aviation Dywizjonu 303 Street 35, 08-521 Deblin, Poland tel.: +48 261 517423, fax: +48 261 517421 e-mail: [email protected] [email protected], [email protected] Andrzej Szelmanowski Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 261 851603, fax: +48 261 851646 e-mail: [email protected] Abstract The pilot, while performing certain tasks or being in the battlefield environment works in a time lag. He is forced to properly interpret the information and quickly and correctly take action. Therefore, the instruments in the cabin should be arranged in such a way that they are legible and the operator have always-easy access to them. Due to the dynamics of the aircraft and the time needed to process the information by the pilot, a reaction delay occurs, resulting in the plane flying in an uncontrolled manner even up to several hundred meters. This article discusses the VFR and IFR flight characteristics, the pilot’s attention during flight, cabin ergonomics, and the placement of on-board instruments having a significant impact on the safety of the task performed in the air. In addition, tests have been carried out to determine exactly what the pilot’s eye is aimed at while completing the aerial task.
    [Show full text]
  • Flight Instruments - Rev
    Flight Instruments - rev. 9/12/07 Ground Lesson: Flight Instruments Objectives: 1. to understand the flight instruments, and the systems that drive them 2. to understand the pitot static system, and possible erroneous behavior 3. to understand the gyroscopic instruments 4. to understand the magnetic instrument, and the short comings of the instrument Justification: 1. understanding of flight instruments is critical to evaluating proper response in case of failure 2. knowledge of flight instruments is required for the private pilot checkride. Schedule: Activity Est. Time Ground 1.0 Total 1.0 Elements Ground: • overview • pitot-static instruments • gyroscopic instruments • magnetic instrument Completion Standards: 1. when the student exhibits knowledge relating to flight instruments including their failure symptoms 1 of 3 Flight Instruments - rev. 9/12/07 Presentation Ground: pitot-static system 1. overview (1) pitot-static system uses ram- air and static air measurements to produce readings. (2) pressure and temperature effect the altimeter i. remember - “Higher temp or pressure = Higher altitude” ii. altimeters are usually adjustable for non-standard temperatures via a window in the instrument (i) 1” of pressure difference is equal to approximately 1000’ of altitude difference 2. components (1) static ports (2) pitot tube (3) pitot heat (4) alternate static ports (5) instruments - altimeter, airspeed, VSI gyroscopic system 1. overview (1) vacuum :system to allow high-speed air to spin certain gyroscopic instruments (2) typically vacuum engine-driven for some instruments, AND electrically driven for other instruments, to allow back-up in case of system failure (3) gyroscopic principles: i. rigidity in space - gyroscopes remains in a fixed position in the plane in which it is spinning ii.
    [Show full text]
  • TOTAL ENERGY COMPENSATION in PRACTICE by Rudolph Brozel ILEC Gmbh Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002
    TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected © ILEC GmbH, all rights reserved. Reproduction with the approval of ILEC GmbH only. FORWARD Rudolf Brozel and Juergen Schindler founded ILEC in 1981. Rudolf Brozel was the original designer of ILEC variometer systems and total energy probes. Sadly, Rudolph Brozel passed away in 1998. ILEC instruments and probes are the result of extensive testing over many years. More than 6,000 pilots around the world now use ILEC total energy probes. ILEC variometers are the variometer of choice of many pilots, for both competition and club use. Current ILEC variometers include the SC7 basic variometer, the SB9 backup variometer, and the SN10 flight computer. INTRODUCTION The following article is a summary of conclusions drawn from theoretical work over several years, including wind tunnel experiments and in-flight measurements. This research helps to explain the differences between the real response of a total energy variometer and what a soaring pilot would prefer, or the ideal behaviour. This article will help glider pilots better understand the response of the variometer, and also aid in improving an existing system. You will understand the semi-technical information better after you read the following article the second or third time. THE INFLUENCE OF ACCELERATION ON THE SINK RATE OF A SAILPLANE AND ON THE INDICATION OF THE VARIOMETER. Astute pilots may have noticed when they perform a normal pull-up manoeuvre, as they might to enter a thermal; the TE (total energy) variometer first indicates a down reading, whereas the non-compensated variometer would rapidly go to the positive stop.
    [Show full text]