Organometallic Chemistry — for Organic Synthesis Abbreviations in Chemical Structures

Total Page:16

File Type:pdf, Size:1020Kb

Organometallic Chemistry — for Organic Synthesis Abbreviations in Chemical Structures Organometallic Chemistry — for organic synthesis Abbreviations in Chemical Structures Me CH - methyl Bz PhC(O)- benzoyl Contents 3 Et MeCH2- ethyl Boc t-BuOCO tert-butoxycarbonyl 1. Main group organometallic chemistry Pr EtCH2- n-propyl Ts p-TolSO 2- p-toluenesulfonyl 1-1. Preparations Bu PrCH2- n-butyl Ms MeSO2- methanesulfonyl 1-2. Reactions Pent BuCH2- n-pentyl Tf CF3SO2- trifluoromethanesulfonyl Hex PentCH - n-hexyl TMS Me Si- trimethylsilyl 2. Reactions of organic molecules and transition-metal complexes 2 3 i-Pr Me2CH- isopropyl TES Et3Si- triethylsilyl 3. Reactions catalyzed by transition-metal complexes i-Bu i-PrCH- isobutyl TBS t-BuMe2Si- tert-butyldimethylsilyl 3-1. Hydrogenation s-Bu EtMeCH- sec-butyl 3-2. Cross-coupling and related reactions t-Bu Me3C- tert-butyl c-Pent c-C H - cyclopentyl 3-3. Olefin metathesis 5 9 t-Am EtMe2C- tert-amyl 3-4. Homogeneous metal catalysts in chemical industry Cy (c-Hex) c-C6H11- cyclohexyl Ph C6H5- phenyl pin -OCMe2CMe2O- pinacolate Bn PhCH2- benzyl cat 1,2-C6H4O2 catecholate Books o-Tol 2-MeC6H4- 2-methylphenyl 1. Comprehensive Organometallic Chemistry III m-Tol 3-MeC6H4- 3-methylphenyl R any C substituents eds. by D. M. P. Mingos and R. H. Crabtree, Elsevier, Oxford, 2007. p-Anis 4-MeOC6H4- 4-methoxyphenyl Ar any aromatic substituents (https://www.sciencedirect.com/science/referenceworks/9780080450476) PMB p-AnisCH2- 4-methoxybenzyl X any halogen and related leaving group Xyl 5-Me-m-Tol - 3,5-dimethylphenyl M any metal substituents 2. 第5版 実験化学講座 有機化合物の合成 VI 金属を用いる有機合成 Mes 2,4,6-Me3C6H2- mesityl 日本化学会 編, 丸善, 2004. (ISBN4-621-07317-6) 1-(a-)Np 1-C10H7- 1-naphtyl TMEDA Me2NCH2CH2NMe2 2-(b-)Np 2-C H - 2-naphtyl HMPA (Me N) P=O 3. 有機金属化学 10 7 2 3 Ac MeC(O)- acetyl 山本明夫, 東京化学同人, 2015. (ISBN978-4-8079-0857-8) 4. Organotransition Metal Chemistry: From Bonding to Catalysis Periodic Table J. F. Hartwig, University Science Books, Sausalito, 2010. (ISBN978-1-8913-8953-5, 日本語訳あり) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 5. Organic Syntheses H He http://www.orgsyn.org/Default.aspx Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Ln Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Lanthanoids (Ln) La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu – 1 – 1. Main group organometallic chemistry Half lives of organolithium compounds in ethereal solvents (min) 1-1. Preparations –40°C –20°C 0°C 20°C 35°C n-BuLi 9180 1860 (0) What is organometallic compounds? in Et2O s-BuLi 1187 139 “Organometallic compounds” means the compounds containing one or more carbon–metal t-BuLi 483 61 complex (C–M) covalent bonds. n-BuLi 1039 107 Features and properties in THF s-BuLi 78 • The organometallic compound has one or more C–M bonds t-BuLi 338 42 • It behaves as a carbanion (carbon nucleophiles) to react with electrophilic compounds P. St anet t y, J. Org. Chem., 62, 1514 (1997). • Reactivity of the C–M bond is greatly affected by electronegativity (c) of the metal atom. Mechanism Li, Mg etc. (small c) Unstable to water and oxygen Mg0 – • R X Mg+ • R X R• •MgX R MgX Not easy to handle in air Too reactive. • The generation of Grignard reagent starts from the electron transfer from metal to organic B, Si, Sn etc. (large c) Relatively stable to water and oxygen halide. Possible to be purifies with extraction and/or chromatography • The reaction proceeds through the radical species, which must be kept low concentration to avoid its homocoupling. (1) Preparation from organic halides and metal (direct method) • In the case of lithium, LiX is generated in the second step. The radical species, R•, reacted Some main group organometals are prepared from the corresponding organic halides with Li atom in place of •MgX. through the reaction with metal elemental substance. This method offers the most fundamental preparation of organolithium and magnesium compounds. (a) Lithium arenide – • R X M = Li etc. (alkali metal) Li + Li+ R Li THF R X + 2 M R M + MX lithium naphthalenide (LN) M = Mg etc. (alkaline earth metal) • Lithium give an electron to the LUMO of naphthalene, forming a radical anion, lithium R X + M R MX (X = I, Br, Cl) naphthalenide (LN). • The redox potential of naphthalenide is higher than that of the metal, but LN is soluble in Notice THF (or related solvent). The high solubility of naphthalenide much facilitates the electron • The reactions are greatly affected by shape of the metal (dispersion, granular, or ingot). transfer to organic halides. • Reactivity of lithium metal is affected by sodium impurity (<1%). The impurity facilitates the • Use of LN allows preparation of organolithiums at low temperature. The mild condition reaction. leads to restriction of the undesired Wurtz reaction. • Lithium or magnesium can be activated with a small piece of iodine or 1,2-dibromoethane. • A catalytic amount of naphthalene is enough for efficient production of organolithiums. • Some organozincs, e.g. Reformatsky and Simmons–Smith reagents, can be obtained from • Arenes below are also usable for the generation of anion radical in place of naphthalene. the reaction of the halide and zinc metal. Zinc–copper couple (alloy) is frequently NMe2 employed for the preparation. t-Bu t-Bu • Optimal solvent depends on the halide as well as the metal. Therefore, the solvent must be carefully chosen for each combination. Et2O and THF is favorable for the preparation DMAN DBB of Grignard reagent and aryllithium. The preparation of alkyllithium is ordinarily carried out Application in hydrocarbon solvent. O Li OH • The organic halide should be carefully and slowly (0.1–3 h) added to the metal suspension OEt OLi OEt OEt DBB (10%) PhCMe H2O to avoid Wurtz reaction. Li Me Cl Me OEt Ph OEt THF, –20°C OEt Ph CO2Et L. Duhamel, Tetrahedron Lett., 39, 8975 (1998). – 2 – (b) Rieke metal Et2O 1. CO2 cat. naphthalene R X Br + Bu Li Li + Bu Br CO H + 2 MXn + n Na or K "M" R M 2. H3O – n NaX or KX (pKa = 50) (pKa = 43) Rieke metal 84% R. D. Rieke, Acc. Chem. Res., 10, 301 (1977); Tetrahedron 53, 1925 (1997). H. Gilman, J. Am. Chem. Soc., 62, 2327 (1940). • Metal halides, MXn, are reduced with sodium arenide to fine metal particles, which are THF 1. PhCHO OH named Rieke metal. I + EtMgBr MgBr rt + • Rieke metal is more reactive than common metal powder. N N 2. H3O N Ph • Various organometals, e.g. Mg, Zn, In, Ca, Cu etc., can be prepared under mild conditions 91% through the reaction of organic halide with Rieke metal. N. Furukawa, Tetrahedron Lett., 28, 5845 (1987). (c) Knochel’s organozinc preparation Turbo Grignard Reagent (i-PrMgCl•LiCl) cat. i-Pr Cl + Mg + LiCl i-Pr MgCl•LiCl THF, rt, 12 h BrCH2CH2Br (5%) R I ZnI•LiCl Br Zn Me3SiCl (1%) Br Br Br t-BuCHO + i-Pr MgCl•LiCl (R = CO Et) cat. OH LiCl 2 R R THF, –50°C, 2 h Br CuCN•2LiCl Br Br Br MgCl•LiCl t-Bu P. Knoc hel, Angew. Chem. Int. Ed., 45, 6040 (2006). 89% P. Knochel, Angew. Chem. Int. Ed., 43, 3333 (2004). • The addition of LiCl remarkably enhance the reactivity of purchasable zinc powder. • Turbo Grignard reagent, i-PrMgCl•LiCl, is more reactive for the X–Mg exchange reaction • The zinc is activated by catalytic 1,2-dibromoethane and TMSCl in the presence of LiCl. than common Grignard reagents. With the reagent, the desired organomagnesiums can The resulting Zn•LiCl readily reacts with various iodo-, bromoarenes, and bromoalkanes. be prepared from the corresponding bromoarenes at low temperature (< 0°C). • This method is applicable for the generation of various functionalized organometal species, • Turbo Grignard reagent is generated from the reaction of i-PrCl and magnesium turnings because organizinc compounds are commonly inert to various functional groups, e.g. in the presence of anhydrous LiCl. ketone, ester, and nitrile. • This method is applicable for the generation of various Grignard reagents bearing various (2) Metal–halogen (M–X) exchange reaction reactive functional groups, such as carboxylate and nitrile. M = Li, MgX etc. R X + R' M R M + R' X (3) Metal–metal (M–M’) exchange reaction (transmetalation) X = I, Br, SeR, TeR etc. (a) Exchange reaction between organometallic compound and metal halide • In the mixture of an organohalide (R–X) and organometal (R’–M), the halogen in R–X is MX = ZnCl , R SnCl, R SiCl, R B(OMe), etc. readily replaced by the metal R’–M to give another organometal R–M. R M’ + MX R MX + M’X n 2 3 3 2 n n–1 M’ = Li, MgX • The metal–halogen exchange reaction is more convenient for preparing the aryl and alkenyl- lithiums in small scale than the direct method. • This reaction is the most reliable method for preparing less reactive organometals, Zn, Al, • In this reaction, R’–M and R–M are in equilibrium. The equilibrium is affected by the Sn, Si, B etc. Organolithium or magnesium is mostly employed as the starting material. thermal stability of each carbanion. The reaction proceeds to the right, when R’–H is larger • This reaction is also in equilibrium. Nevertheless, the desired organometals are obtained in pKa than R–H.
Recommended publications
  • Handbook of Less-Common Nanostructures
    HANDBOOK OF LESS-COMMON NANOSTRUCTURES Boris I. Kharisov • Oxana Vasilievna Kharissova Ubaldo Ortiz-Mendez CRC Press Taylor &. Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an Informa business Contents Abbreviations xix Preface xxiii Acknowledgments xxv Authors xxvii PART I Introduction to Nanostructures Chapter 1 Methods for Obtaining Nanoparticles and Other Nanostructures 3 1.1 General Remarks on Nanoparticle Fabrication 3 1.2 Examples of Several Important Methods for the Synthesis of Nanoobjects 3 1.2.1 Vapor and Plasma-Based Techniques 3 1.2.2 Electrochemical Methods 10 1.2.3 Microwave, Ultrasonic, and UV-Irradiation Techniques 14 1.2.4 High-Pressure Methods 18 1.2.5 Use of Microfluidic Chips 20 1.2.6 Synthesis in Reversed Micelles 21 1.2.7 Hot-Plate Method 21 1.2.8 Other Chemical Routes 22 1.2.9 Biochemical and Self-Assembly Methods 24 1.3 "Green" Aspects of Nanoparticle Synthesis 26 References 27 Chapter 2 Brief Description of Some Classic Nanostructures 31 2.1 Carbon-Based Nanostructures 31 2.1.1 Carbon Nanotubes 31 2.1.2 Fullerenes 34 2.1.3 Nanodiamonds 35 2.1.4 Graphene and Graphane 37 2.2 Conventional Noncarbon Nanostructures 38 2.2.1 Simple and Core-Shell Nanoparticles 38 2.2.2 Nanometals 42 2.2.3 Gallery of Other Conventional Nanostructures 42 References 48 PART II Less-Common Nanostructures Chapter 3 Simple, Linear ID, 2D, and 3D Nanostructures 57 3.1 Nanolines 57 3.2 Nanopencils 61 ix X Contents 3.3 Nanodumbbells 66 3.4 Nanoshuttles 70 3.5 Nanopeapods 73 3.6 Nanopins 77 3.7
    [Show full text]
  • FAROOK COLLEGE (Autonomous)
    FAROOK COLLEGE (Autonomous) M.Sc. DEGREE PROGRAMME IN CHEMISTRY CHOICE BASED CREDIT AND SEMESTER SYSTEM-PG (FCCBCSSPG-2019) SCHEME AND SYLLABI 2019 ADMISSION ONWARDS 1 CERTIFICATE I hereby certify that the documents attached are the bona fide copies of the syllabus of M.Sc. Chemistry Programme to be effective from the academic year 2019-20 onwards. Date: Place: P R I N C I P A L 2 FAROOK COLLEGE (AUTONOMOUS) MSc. CHEMISTRY (CSS PATTERN) Regulations and Syllabus with effect from 2019 admission Pattern of the Programme a. The name of the programme shall be M.Sc. Chemistry under CSS pattern. b. The programme shall be offered in four semesters within a period of two academic years. c. Eligibility for admission will be as per the rules laid down by the College from time to time. d. Details of the courses offered for the programme are given in Table 1. The programme shall be conducted in accordance with the programme pattern, scheme of examination and syllabus prescribed. Of the 25 hours per week, 13 hours shall be allotted for theory and 12 hours for practical; 1 theory hour per week during even semesters shall be allotted for seminar. Theory Courses In the first three semesters, there will be four theory courses; and in the fourth semester, three theory courses. All the theory courses in the first and second semesters are core courses. In the third semester there will be three core theory courses and one elective theory course. College can choose any one of the elective courses given in Table 1.
    [Show full text]
  • Organometallic Compounds
    Chapter 11 Organometallic compounds Organometallics Reactions using organometallics Organometallic compounds Ch 11 #2 = comp’s containing a carbon-metal bond δ− δ+ C in organometallic comp’ds are nucleophilic. C in organic comp’d (like ROH, RNH , and RX) 2 δ+ δ are electrophilic. − due to ∆EN Ch 11 #3 in substitution reactions a carbon Nu: R-Li and R-MgX Ch 11 #4 (used to be) the two most common organometallics organolithium comp’ds BuLi = an alkyl lithium organomagnesium comp’ds = Grignard reagents 1912 Nobel Prize R, Ar, vinyl all possible; Br (as X) popular Ether (solvent) coordinates Mg, stabilizing it. Reactions of R-Li and R-MgX Ch 11 #5 reacts like a carbanion C:– ~ a C Nu: reactions as C Nu: (like SN(2)) nucleophilic addition to carbonyls ~ more often Chapt 16 Ch 11 #6 R-Li and R-MgX are very strong B: how strong? pKa? − − react even with very weak acid stronger than OH? NH2? useful for preparing deuterated HC Storage and reaction must be acid- and moisture-free. Transmetal(l)ation Ch 11 #7 R-Li is more reactive than R-MgX is. C–Li more polar than C–Mg C of R-Li more nu-philic [better Nu:] transmetalation [metal exchange] to less reactive [more stable] organometallic Coupling using Gilman reagent Ch 11 #8 coupling reaction (in organic chemistry) two hydrocarbon fragments are coupled (to form C–C) with the aid of a (transition) metal catalyst Gilman reagent coupling of R of R-X and R’ of Gilman reagent RX + R’2CuLi R–R’ mechanism? substitution of X with R’? not clear Ch 11 #9 R can be alkyl, aryl, or alkenyl [vinyl] which is not possible by R-Li or R-MgX Is R of Gilman why? they are SN(2).
    [Show full text]
  • Structures and Reaction Mechanisms of Organocuprate Clusters in Organic Chemistry
    REVIEWS Wherefore Art Thou Copper? Structures and Reaction Mechanisms of Organocuprate Clusters in Organic Chemistry Eiichi Nakamura* and Seiji Mori Organocopper reagents provide the principles. This review will summarize example of molecular recognition and most general synthetic tools in organic first the general structural features of supramolecular chemistry, which chemistry for nucleophilic delivery of organocopper compounds and the pre- chemists have long exploited without hard carbanions to electrophilic car- vious mechanistic arguments, and then knowing it. Reasoning about the bon centers. A number of structural describe the most recent mechanistic uniqueness of the copper atom among and mechanistic studies have been pictures obtained through high-level neighboring metal elements in the reported and have led to a wide variety quantum mechanical calculations for periodic table will be presented. of mechanistic proposals, some of three typical organocuprate reactions, which might even be contradictory to carbocupration, conjugate addition, Keywords: catalysis ´ conjugate addi- others. With the recent advent of and SN2 alkylation. The unified view tions ´ copper ´ density functional physical and theoretical methodolo- on the nucleophilic reactivities of met- calculations ´ supramolecular chemis- gies, the accumulated knowledge on al organocuprate clusters thus ob- try organocopper chemistry is being put tained has indicated that organocup- together into a few major mechanistic rate chemistry represents an intricate 1. Introduction 1 R Cu X The desire to learn about the nature of elements has been R or R1 R and will remain a main concern of chemists. In this review, we R Cu will consider what properties of copper make organocopper R1 chemistry so useful in organic chemistry.
    [Show full text]
  • Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes
    Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes By Daniel Steven Levine A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor T. Don Tilley, Co-Chair Professor Richard A. Andersen, Co-Chair Professor Alexis T. Bell Summer 2016 Abstract Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes by Daniel Steven Levine Doctor of Philosophy in Chemistry University of California, Berkeley Professor T. Don Tilley, Co-Chair Professor Richard A. Andersen, Co-Chair Chapter 1. A series of scandium dialkyl complexes, (PNP)ScR2 (R = neopentyl, trimethylsilylmethyl), supported by the monoanionic, chelating PNP ligand (2,5- bis(dialkylphosphinomethyl)pyrrolide; alkyl = cyclohexyl, tert-butyl) was synthesized and the reactivities of these complexes toward simple hydrocarbons was investigated. The scandium– carbon bonds undergo σ-bond metathesis reactions with hydrogen and these complexes are catalysts for the hydrogenation of alkenes. Reactions with primary amines led to formation of amido complexes that undergo cyclometalation via σ-bond metathesis, without involvement of an imido complex intermediate. A variety of carbon-hydrogen bonds are also activated, including sp-, sp2-, and sp3-C–H bonds (intramolecularly in the latter case). Levine, D. S.; Tilley, T. D.; Andersen, R. A. Organometallics 2015, 34 (19), 4647. Chapter 2. Terminal group 3 methylidene complexes are generated by thermolysis of monoanionic PNP-supported scandium and yttrium dialkyl complexes. The reaction mechanism has been probed by deuterium-labeling experiments and DFT calculations. Abstraction of a γ- hydrogen from one alkyl group by the other affords a metallacyclobutane that undergoes [2+2] cycloreversion, analogous to a key step in the olefin metathesis reaction, to generate a methylidene complex and isobutene.
    [Show full text]
  • Organic Materials for Electronic Devices
    Organic Materials for Electronic Devices by Lichang Zeng Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Supervised by Professor Shaw H. Chen and Professor Ching W. Tang Department of Chemical Engineering Arts, Sciences and Engineering Edmund A. Hajim School of Engineering and Applied Sciences University of Rochester Rochester, New York 2010 ii To my family iii CURRICULUM VITAE Lichang Zeng was born in 1978 in Fujian, China. In 2001, he received a Bachelors of Engineering degree in Polymer Materials from Zhejiang University, Hangzhou, China. He continued on at Zhejiang University receiving his Master of Science degree in 2004. He then moved to the University of Rochester to pursue his doctorate in Chemical Engineering under the joint supervision of Professors Shaw H. Chen and Ching W. Tang, receiving a Master of Science degree in 2009. His field of research was in organic electronic materials and devices. Selected Publications in Referee Journals 1. Zeng, L. C.; Tang, C. W.; Chen, S. H. “Effects of Active Layer Thickness and Thermal Annealing on Polythiophene:Fullerene Bulk Heterojunction Photovoltaic Cells.” Applied Physics Letters, 2010, 97, 053305. 2. Zeng, L. C.; Blanton, T. N.; Chen, S. H. “Modulation of Phase Separation between Spherical and Rod-Like Molecules Using Geometric Surfactancy.” Langmuir 2010, 26, 12877. 3. Zeng, L. C.; Lee, T. Y. S.; Merkel, P. B.; Chen, S. H. “A New Class of Non-Conjugated Bipolar Hybrid Hosts for Phosphorescent Organic Light-Emitting Diodes.” Journal of Materials Chemistry 2009, 19, 8772. 4. Zeng, L. C.; Yan, F.; Wei, S. K. H.; Culligan, S.
    [Show full text]
  • Organocuprate Aggregation and Reactivity: Decoding the 'Black Box'
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Organocuprate Aggregation and Reactivity: Decoding the ‘Black Box’ Aliaksei Putau aus Vitebsk, Weißrussland 2012 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Konrad Koszinowski betreut, und von Herrn Prof. Dr. Mayr von der Fakultät für Chemie und Pharmazie vertreten. Eidesstattliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, 11.06.2012 _______________________ Aliaksei Putau Dissertation eingereicht am: 12.06.2012 1. Gutachter Prof. Dr. Herbert Mayr 2. Gutachter Prof. Dr. Konrad Koszinowski Mündliche Prüfung am: 20.07.2012 Acknowledgements It is a pleasure to thank the many people who made this project possible. My gratitude to my PhD supervisor, Prof. Dr. Konrad Koszinowski, is difficult to overstate. His sound advice, good company, and enthusiasm for trying new things ensured the tropical sunny climate in our group that is so necessary for fruitful (and, above all, enjoyable) research. Besides, his involvement in the group life outside the lab made all of us group members feel like team members, not just a loose bunch of colleagues. I am also deeply indebted to Prof. Dr. Herbert Mayr, not only for his continuous generous support and help, but also for running such a cool, all-star research group, which provided a great many social occasions. I thank SFB 749 for the financial support of this project, specifically Mrs. Birgit Carell, for her support and understanding of my worries and troubles of all kinds. Furthermore, my sincere gratitude goes to Prof.
    [Show full text]
  • Select Reactions of Organoboranes and Organostannanes
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Select Reactions of Organoboranes and Organostannanes David W. Blevins [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Organic Chemistry Commons Recommended Citation Blevins, David W., "Select Reactions of Organoboranes and Organostannanes. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1412 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by David W. Blevins entitled "Select Reactions of Organoboranes and Organostannanes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. George W. Kabalka, Major Professor We have read this dissertation and recommend its acceptance: Shane Foister, Craig Barnes, Kimberly Gwinn Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Select Reactions of Organoboranes and Organostannanes A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville David W. Blevins August 2012 DEDICATION I dedicate this work to Lisa, Preston, and Clarissa Blevins. ii ACKNOWLEDGEMENTS I would like to thank Dr.
    [Show full text]
  • Sub-10 Nm Nano-Structured Carbohydrate-Based Block Copolymer Thin Films for Organic Photovoltaic Applications Yoko Otsuka
    Sub-10 nm nano-structured carbohydrate-based block copolymer thin films for organic photovoltaic applications Yoko Otsuka To cite this version: Yoko Otsuka. Sub-10 nm nano-structured carbohydrate-based block copolymer thin films for organic photovoltaic applications. Theoretical and/or physical chemistry. Université Grenoble Alpes, 2017. English. NNT : 2017GREAV024. tel-01830370 HAL Id: tel-01830370 https://tel.archives-ouvertes.fr/tel-01830370 Submitted on 5 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE ALPES Spécialité : Chimie Physique Moléculaire et Structurale Arrêté ministériel : 7 août 2006 Présentée par Yoko OTSUKA Thèse dirigée par Redouane BORSALI préparée au sein du Centre de Recherche sur les Macromolécules Végétales (CERMAV) et du Centre de Technique du Papier (CTP) dans l'École Doctorale Chimie et Sciences du Vivant Films minces nanostructurés de domaines sub-10 nm à partir de copolymères biosourcés pour des applications dans le photovoltaïque organique Thèse soutenue publiquement le « 4 janvier 2017 », devant le jury composé de : M. Patrice RANNOU Directeur de Recherche au CNRS, SPrAM (Président) M. Martin BRINKMANN Directeur de Recherche au CNRS, ICS (Rapporteur) M.
    [Show full text]
  • Active Metals • Preparation • Characterization • Applications
    Active Metals • Preparation • Characterization • Applications Edited by Alois Fürstner Weinheim • New York VCH Basel • Cambridge • Tokyo Contents Preface V List of Contributors XVII 1 Rieke Metals: Highly Reactive Metal Powders Prepared by Alkali Metal Reduction of Metal Salts R. D. Rieke, M. S. Seil, W. R. Klein, T. Chen, J. D. Brown, and M. V. Hanson 1.1 Introduction 1 1.1.1 Physical Characteristics of Highly Reactive Metal Powders 3 1.2 Rieke Magnesium, Calcium, Strontium, and Barium 3 1.2.1 Formation of Rieke Magnesium 4 1.2.2 Formation of Rieke Calcium, Strontium, and Barium 4 1.2.3 Grignard Reactions Using Rieke Metals 5 1.2.4 1,3-Diene-Magnesium Reagents 7 1.2.4.1 Preparation 7 1.2.4.2 Regioselectivity 7 1.2.4.3 Carbocyclization of (l,4-Diphenyl-2-butene-l,4-diyl)magnesium with Organic Dihalides 8 1.2.4.4 1,2-Dimefhylenecycloalkane-Magnesium Reagents 11 1.2.4.5 Synthesis of Fused Carbocycles, ß, y-Unsaturated Ketones and 3-Cyclopentenols from Conjugated Diene-Magnesium Reagents 12 1.2.4.6 Synthesis of Spiro y-Lactones and Spiro (5-Lactones from 1,3-Diene- Magnesium Reagents 16 1.2.4.7 Synthesis of y-Lactams from Conjugated Diene-Magnesium Reagents ... 20 1.3 Rieke Zinc 24 1.3.1 The Preparation of Rieke Zinc 24 1.3.2 Direct Oxidative Addition of Functionalized Alkyl and Aryl Halides .... 24 1.3.3 Reactions of Organozinc Reagents with Acid Chlorides 25 1.3.4 Reactions of Organozinc Reagents with a,/?-Unsaturated Ketones 25 1.3.5 Reactions with Allylic and Alkynyl Halides 28 1.3.6 Cross-Coupling of Vinyl and Aryl Organozinc Reagents
    [Show full text]
  • Chem 341 • Organic Chemistry I Lecture Summary 29 • November 02, 2007
    Chem 341 • Organic Chemistry I Lecture Summary 29 • November 02, 2007 Chapter 10 - Alkyl Halides Preparation of Organometallic Compounds - Grignard reagents Alkyl halides are good electrophiles. We will examine their reactivity in nucleophilic substitution in detail in the next chapter. Another useful property of alkyl halides as that reducing metals can insert between the C-X bond to prepare a C-metal bond. This drastically alters the reactivity as the metal is less electronegative than carbon. Thus, the reactivity of the carbon is reversed from being an electrophile to being a nucleophile. Grignard reagents are formed from the insertion of Mg metal into the C-X bond. These reagents are very reactive as bases and electrophiles and are extremely sensitive to any source of proton (water, ROH, RNH2, etc). This can be useful if one wants to reduce an alkyl halide to an alkane. It is also a useful method of introducing hydrogen isotopes, such as deuterium, by reaction of the Grignard reagent with heavy water (D stands for Deuterium, the isotope of hydrogen 2H). Grignard reagents can be prepared from a variety of different kinds of organohalides (eg. Alkyl halides, vinyl halides, etc.). One important reaction of Grignard reagents is their ability to add to carbonyl compounds (C=O double bonds). You will study this in detail next semester. δ− δ+ δ+ Br δ− Mg Br D Mg D2O O reactivity of OH carbon reversed R H then H+ R Preparation of Organometallic Compounds - Gilman reagents Lithium metal reacts with organohalides in a simlar fashion as magnesium. Organolithium reagents are very basic and are often used to deprotonated compounds that are not very acidic.
    [Show full text]
  • REVIEW Methyl Complexes of the Transition Metals
    REVIEW Methyl Complexes of the Transition Metals Jesús Campos,[b] Joaquín López-Serrano,[a] Riccardo Peloso,[a] and Ernesto Carmona*[a] Dedicated to Prof. Pierre Braunstein in recognition of his contributions to inorganic and organometallic chemistry [a] Title(s), Initial(s), Surname(s) of Author(s) including Corresponding Author(s) Department Institution Address 1 E-mail: [b] Title(s), Initial(s), Surname(s) of Author(s) Department Institution Address 2 Supporting information for this article is given via a link at the end of the document.((Please delete this text if not appropriate)) REVIEW Abstract: Organometallic chemistry can be considered as a wide focusing in the last 5 years. It begins with a brief description of area of knowledge that combines concepts of classic organic synthetic methods, followed by a selection of recently reported chemistry, i.e. based essentially on carbon, with molecular inorganic complexes with terminal and bridging methyl ligands from the chemistry, especially with coordination compounds. Transition metal groups 3 to 11 of the periodic table. A specific section is methyl complexes probably represent the simplest and most dedicated to methyl-bridged species with three-centre two- fundamental way to view how these two major areas of chemistry electron bonds. The review concludes highlighting relevant combine and merge into novel species with intriguing features in reactivity of the methyl group in this class of compounds. terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition metal complexes containing Ernesto Carmona (PhD degree, University M—CH3 fragments.
    [Show full text]