Dna Research, 2017, 24(2), 179–192 doi: 10.1093/dnares/dsw054 Advance Access Publication Date: 27 January 2017 Full Paper Full Paper The draft genome of Ruellia speciosa (Beautiful Wild Petunia: Acanthaceae) Yongbin Zhuang1,2 and Erin A. Tripp1,2,* 1Department of Ecology and Evolutionary Biology, University of Colorado, UCB 334, Boulder, CO 80309, USA and 2Museum of Natural History, University of Colorado, UCB 350, Boulder, CO 80309, USA *To whom correspondence should be addressed. Email:
[email protected] Edited by Dr. Sachiko Isobe Received 18 July 2016; Editorial decision 16 November 2016; Accepted 17 November 2016 Abstract The genus Ruellia (Wild Petunias; Acanthaceae) is characterized by an enormous diversity of floral shapes and colours manifested among closely related species. Using Illumina platform, we reconstructed the draft genome of Ruellia speciosa, with a scaffold size of 1,021 Mb (or 1.02 Gb) and an N50 size of 17,908 bp, spanning 93% of the estimated genome (1.1 Gb). The draft assembly predicted 40,124 gene models and phylogenetic analyses of four key en- zymes involved in anthocyanin colour production [flavanone 3-hydroxylase (F3H), flavonoid 30- hydroxylase (F30H), flavonoid 30,50-hydroxylase (F3050H), and dihydroflavonol 4-reductase (DFR)] found that most angiosperms here sampled harboured at least one copy of F3H, F30H, and DFR. In contrast, fewer than one-half (but including R. speciosa) harboured a copy of F3050H, support- ing observations that blue flowers and/or fruits, which this enzyme is required for, are less com- mon among flowering plants. Ka/Ks analyses of duplicated copies of F30H and DFR in R.