Synthesis Characterisation and Properties of Tantalum Based

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis Characterisation and Properties of Tantalum Based Dunnill, Charles W. H. (2008) Synthesis, characterisation and properties of tantalum based inorganic nanofibres. PhD thesis. http://theses.gla.ac.uk/173/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] SYNTHESIS, CHARACTERISATION AND PROPERTIES OF TANTALUM BASED INORGANIC NANOFIBRES A thesis submitted to the University of Glasgow for the degree of Doctor of Philosophy By Charles W. H. Dunnill MSci School of Chemistry University of Glasgow December 2007 © Charles W. H. Dunnill. December 2007 Abstract This thesis describes the synthesis and characterisation of 1-dimensional nanometric phases using simple preparative reactions and a variety of characterisation methods. Comparison of properties between the bulk and nanomorphology has played a large part and is a common theme throughout. High aspect ratio tantalum disulfide, TaS 2 nanofibres were prepared from a 1:2 stoichiometric mixture of elemental powders in a one-step synthesis utilising silica ampoules. A surface assisted growth phenomena was investigated and found to significantly increase the yield, both in quality and quantity. The resulting nanofibres were seen to retain and indeed enhance some of the bulk properties, e.g. a 50 fold increase in observed superconducting transition temperature. Changing the stoichiometry of the reactants to 1:3, produced tantalum trisulfide nanofibres. Tantalum trisulfide is of interest as it has pseudo 1-dimensional crystal structure and properties in the bulk. TEM and SAED have shown that the TaS 3 unit cell is oriented with the b direction parallel to the long axis of the nanofibres, indicating the potential for the transfer of the low dimensional properties of the bulk material into the nanophase morphology. (Low dimensional properties of bulk TaS3 result from chains of tantalum atoms propagating along the b direction of the unit cell). Although the structure of the TaS 3 remains illusive the preliminary investigations show these nanofibres to be metallic along their lengths, potentially leading to many applications in nanoscale electrical devices. The concept of pseudomorphic change from the disulfide nanomaterials into more functional materials such as Ta 3N5 and Ta 2O5 was investigated. Nanofibres were initially formed and can reversibly be inter-converted between the three different nanometric phases (TaS 2, Ta 3N5 and Ta 2O5) using simple solid-gas reaction, without significant loss of nanofibrous morphology. Further this series of reactions shows potential for the formation of i other related and potentially applicable nanometric phases such as TaN, TaO 2 and TaON as well as opening the door to countless other analogous systems. ii Quotes “These nanotubes are so amazing that they may be useful to everybody” Nobel laureate R. Smalley Nanotechnology “will bring revolutionary changes to all branches of industry, beginning with the production of antibiotics and ending with new weapons” E. Drexler "Nanotechnology is the base technology of an industrial revolution in the 21st century. Those who control nanotechnology will lead the industry" Michiharu Nakamura, Executive VP at Hitachi iii Acknowledgements Many people have been instrumental in the facilitation of the project. Firstly I’d like to thank Professor Duncan Gregory whose supervision has kept me on track throughout the project. Secondly I’d like to thank all the past and present lab members from both institutions; Nottingham and Glasgow, who have been there for support and made my time in the lab memorable. I would like to thank all the technical support, again from both institutions, be it workshop staff or technicians who have helped me find build or repair equipment. I would also like to thank: Hannah Edwards and Paul Brown from the University of Nottingham and Ian MacLaren from the University of Glasgow, who have helped out with the TEM, as well as Nikki Weston from the University of Nottingham who has helped out with SEM and Jim Gallagher from the University of Glasgow who has been there for support with the primary SEM used in the project. A nanofibre based project like this is nothing without the ability to image the structures, so TEM and SEM have played an important role in the characterisation of some of the nanofibrous materials discussed. Philip Moriarty and Andrew Stannard from the University of Nottingham are also thanked for their time in the attempts to gain understanding of the electrical behaviour of the nanowires. iv Contents Abstract……………………………………………………………………………...…..….i Quotes…………………………………………………………………………………........iii Acknowledgements………………………………………….………………………...……iv Contents………………………………………………………………………………......…v Glossary of Abbreviations……………………………………………………………..……ix List of Tables…………………………….………………………………………..….……..x List of Figures…………………………………………………………………………….…xii Chapter 1: General Introduction and Theory ......................................................................... 1 1.1 Introduction............................................................................................................ 1 1.1.1 Current Uses of Nanotechnology .................................................................... 3 1.1.2 Inorganic Compounds Known to Form Nanofibres ......................................... 6 1.1.3 Conventional Definitions for Inorganic Nanofibres......................................... 7 1.2 Basic Crystallography............................................................................................. 7 1.2.1 Unit Cells, Crystal Systems and the Bravais Lattice ........................................ 7 1.2.2 Point Groups................................................................................................... 9 1.2.3 Space Groups.................................................................................................. 9 1.2.4 Miller Indices ............................................................................................... 10 1.2.5 Bragg’s Law................................................................................................. 12 1.3 Charge-Density-Waves......................................................................................... 13 1.3.1 Formation of Charge-Density-Waves............................................................ 14 1.3.2 Conduction in Charge-Density-Wave Systems.............................................. 15 1.3.3 Measurable Properties of Charge-Density-Wave Systems ............................. 16 1.4 Magnetic Materials............................................................................................... 16 1.4.1 Types of Magnetic Material.......................................................................... 20 1.4.2 Paramagnetic Materials................................................................................. 20 1.4.3 Ferromagnetic Materials............................................................................... 22 1.4.4 Superconducting Materials............................................................................ 23 1.5 MX 2 Compounds (Bulk)....................................................................................... 25 1.5.1 Tantalum Disulfide....................................................................................... 26 1.5.2 Properties of TaS 2 ......................................................................................... 27 1.6 MX 3 Compounds.................................................................................................. 30 1.6.1 Tantalum Trisulfide ...................................................................................... 30 1.7 Oxides.................................................................................................................. 32 1.8 Tantalum Oxide.................................................................................................... 32 1.9 Nitrides ................................................................................................................ 33 1.10 Tantalum Nitride .................................................................................................. 33 1.11 Inorganic Nanofibre Research............................................................................... 34 1.11.1 MX 2 Compounds Nanofibres ........................................................................ 35 1.11.1.1 Tungsten Disulfide Nanofibres................................................................. 36 1.11.1.2 Molybdenum Disulfide Nanofibres .......................................................... 36 1.11.1.3 Niobium Disulfide Nanofibres ................................................................. 37 1.11.1.4 Tantalum Disulfide Nanofibres ................................................................ 38 1.11.1.5 Niobium Diselenide Nanofibres ............................................................... 39 1.11.1.6 Molibdenum Diselenide and Tungsten Diselenide Nanofibres.................. 40 1.11.1.7 Other Disulfide Nanofibres
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • Holtite Al6(Al; Ta)(BO3)[(Si; Sb; As)O4]3(O; OH)3 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    Holtite Al6(Al; Ta)(BO3)[(Si; Sb; As)O4]3(O; OH)3 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: 2=m 2=m 2=m: In blocky crystals, to 2 cm; as pseudohexagonal needles, elongated along [100], typically S-shaped; ¯nely crystalline. Twinning: Multiple on 011 . f g Physical Properties: Cleavage: Good on 001 , may be parting. Hardness = 8.5 D(meas.) = 3.60{3.90 D(calc.) = [3.92] Fluofrescges dull orange under SW UV and bright yellow under LW UV. Optical Properties: Semitransparent. Color: Light bu® to cream-bu® or deep olive-bu®, brown, russet. Streak: Light bu®. Luster: Resinous, vitreous, dull when weathered. Optical Class: Biaxial ({). Pleochroism: Various shades of yellow to colorless. Orientation: X = a. Dispersion: r < v: ® = 1.705{1.746 ¯ = 1.728{1.759 ° = 1.730{1.761 2V(meas.) = 20±{55± Cell Data: Space Group: P nma: a = 4.6914(5) b = 11.896(2) c = 20.383(4) Z = 4 X-ray Powder Pattern: Greenbushes, Western Australia. 10.28 (100), 2.94 (40), 5.89 (34), 5.93 (32), 5.08 (32), 2.338 (26), 5.12 (24) Chemistry: (1) (2) (1) (2) SiO2 20.30 26.74 BeO 0.05 TiO2 0.09 MgO 0.10 B2O3 1.82 4.67 CaO 0.10 Al2O3 46.43 43.44 Li2O 0.59 Fe2O3 0.27 0.20 Na2O 0.35 Sb2O3 13.89 K2O 0.45 Sb2O5 4.61 6.49 Rb2O 0.11 As2O5 2.92 Cs2O 0.57 + Nb2O5 0.76 0.15 H2O 0.38 1.13 Ta2O5 11.24 11.70 H2O¡ 0.08 MnO 0.05 Total 99.97 99.71 (1) Greenbushes, Western Australia; B2O3 thought to be low; corresponding to Al24:50Ta1:36 3+ 3+ 5+ Nb0:16Fe0:10Be0:05Ti0:03Mn0:02B1:40Si9:09Sb2:56Sb0:76O66:62(OH)1:13: (2) Kola Peninsula, 5+ 5+ Russia; corresponding to Al23:23Ta1:49Nb0:03Fe0:09Mg0:06Ca0:06Ti0:03B3:84Si10:64Sb1:15As0:72 O69:57(OH)2:09: Occurrence: As coatings on stibiotantalite and replacing tantalite in a pegmatite (Greenbushes, Western Australia); in pegmatites cutting amphibolites (Voron'i massif, Russia).
    [Show full text]
  • The Preparation and Properties of Tase2 Single Crystal
    International Journal of Physics and Mathematical Sciences ISSN: 2277-2111 (Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jpms.htm 2016 Vol. 6 (1) January-March, pp. 11-16/Patel and Lakhataria. Research Article SYNTHESIS AND STRUCTURAL ANALYSIS OF NBSE2 SINGLE CRYSTALS *Kaushik R Patel1 and Duhita Lakhataria2 1Biogas Research Center, Mahadevbhai Desai Gramseva Mahavidhyalaya, Gujarat Vidyapith, Sadra 382 320 2Government Polytechnique College, Amadavad *Author for Correspondence ABSTRACT The transition metal dichalcogenides NbS2 and NbSe2 are layer compounds consisting of sandwiches with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. The NbSe2 single crystals were grown by chemical vapour transport technique (CVT) using iodine as transporting agent. The chemical compositions of the grown crystals were confirmed with the help of energy dispersive analysis by X-ray (EDAX). The structural properties were studied by X- ray diffraction analysis (XRD). The crystals were found to possess hexagonal crystal structure. The lattice parameters, unit cell volume, grain size and X-ray density were computed for this crystal. The results obtained are discussed in detail. Keywords: Crystal Growth, Semiconductor, EDAX, XRD, Lattice Parameters PACS Nos.: 61.50.Nw, 61.10.Nz, 81.40.Tv INTRODUCTION The transition metal dichalcogenides, NbS2 and NbSe2 are layered compounds consisting of sandwiches with strong covalent/ionic intra layer bonds and weak van der Waals interlayer interactions. The stacking sequence of S and Nb are AcA BcB (2H- NbS2 structure) or AbA BcB CaC (3R- MoS2 structure) for NbSe2 several more stacking sequences exist (Lieth et al., 1977; Boswell et al., 1976; Harper, 1977).
    [Show full text]
  • Geochemical Alteration of Pyrochlore Group Minerals: Microlite Subgroup Gnrconv R. Luurpxrn Roonev C. Ewruc Ansrru.Cr
    AmericanMineralogist, Volume 77, pages l,79-188,1992 Geochemical alteration of pyrochlore group minerals: Microlite subgroup Gnrconv R. LuurpxrN Advanced Materials Program, Australian Nuclear Science and Technology Organisation, Private Mail Bag I, Menai, New South Wales 2234, Ans1nalla RooNev C. Ewruc Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A. Ansrru.cr A qualitative picture of microlite stability is derived from known mineral assemblages and reactions in the simplified system Na-Ca-Mn-Ta-O-H. Results suggestthat microlite is stable under conditions of moderate to high 4*"* and aq^z*and low to moderate 4rnz*. Microlite is often replaced during the latter stagesof granitic pegmatite evolution by man- ganotantalite and fersmite or rynersonite, indicating increasingdq^z* ?fid 4Mn2*relative to a*.-. Primary (hydrothermal) alteration involves replacementof Na, F, and vacanciesby Ca and O, representedby the coupled substitutions ANaYF- ACaYOand AtrY! - ACaYO. Exchangereactions between microlite and fluid suggestconditions of relatively high pH, high aa,^z*,lowto moderate a.r, and low a".. during alteration by evolved pegmatite fluids at 350-550'C and 2-4 kbar. Secondary(weathering) alteration involves leaching ofNa, Ca, F, and O, representedby the coupled substitutions ANaYF - AEY!, ACaYO- AEYII and ACaxO - Alxfl. Up to 800/oof the A sites may be vacant, usually accompaniedby a comparablenumber of anion (X + Y) vacanciesand HrO molecules.Secondary alteration results from interaction with relatively acidic meteoric HrO at temperatures below 100 "C. In both types of alteration, the U content remains remarkably constant.Loss of radio- genic Pb due to long-term difftrsion overprints changesin Pb content associatedwith primary alteration in most samples.
    [Show full text]
  • Crystallization Processes and Solubility of Columbite-(Mn), Tantalite-(Mn), Microlite, Pyrochlore, Wodginite and Titanowodginite in Highly Fluxed Haplogranitic Melts
    Western University Scholarship@Western Scholarship@Western Electronic Thesis and Dissertation Repository 3-12-2018 10:30 AM Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts Alysha G. McNeil The University of Western Ontario Supervisor Linnen, Robert L. The University of Western Ontario Co-Supervisor Flemming, Roberta L. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Alysha G. McNeil 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Earth Sciences Commons Recommended Citation McNeil, Alysha G., "Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts" (2018). Electronic Thesis and Dissertation Repository. 5261. https://ir.lib.uwo.ca/etd/5261 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Niobium and tantalum are critical metals that are necessary for many modern technologies such as smartphones, computers, cars, etc. Ore minerals of niobium and tantalum are typically associated with pegmatites and include columbite, tantalite, wodginite, titanowodginite, microlite and pyrochlore. Solubility and crystallization mechanisms of columbite-(Mn) and tantalite-(Mn) have been extensively studied in haplogranitic melts, with little research into other ore minerals. A new method of synthesis has been developed enabling synthesis of columbite-(Mn), tantalite-(Mn), hafnon, zircon, and titanowodginite for use in experiments at temperatures ≤ 850 °C and 200 MPa, conditions attainable by cold seal pressure vessels.
    [Show full text]
  • IMA Master List
    The New IMA List of Minerals – A Work in Progress – Update: February 2013 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]
  • New Mineral Names*
    Americ an Mineralogist, Volume69, pages 1190-1196,19U NEW MINERAL NAMES* Pere J. DuNN, Lours J. Ceenr, Jeur,s A. FBnnatolo, JoEL D. Gnrce, JoHN L. Jaunon, WolpceNc MueI-rBR. Jnuss E. Snrcrev. Jecnr Pvzte:wtcz, eNp Devto A' VeNro Bismutostibiconite* mineral usually occurs as individual grains up to 200 pm, but it is sometimesclosely intergrown with polarite, sobolevskite' sper- K. Walenta (1983) Bismutostibiconite, a new mineral of the and other platinum-groupminerals' In galena-+halcopyrite stibiconitegroup from the Black Forest.Chem. Erde,42,77- rylite vein ores, cassiteriteand stannite are associatedwith cabriite. El (in German). The mineral has been synthesizedand disorders at 200"C to Quantitative analysis (electron beam instrument with stan- form cubic (Pd,Cu)rSn solid solution. dardlessEDS) of the mineralgave Fe2O3 6.9,Bi2O3 49.2, Sb2O3 In polished section the mineral is white with a slight greyish 43.9, sum 100.0%,corresponding to Fe3l54Bi?5rsbi:eo7,a Bi (pinkish?)tinge the brightnessof the pink color changesdepend- and Fe containing member of the stibiconite group. ing on the host minerals. Bireflectance in air is detectable, and X-ray camerastudies show the mineral to be cubic, Fd3m, a: under crossed nicols, cabriite grains are strongly anisotropic 10.384,Z = 8,D calc. 7.38.The strongestX-ray lines(12 given) (from greyish brown to goldencolors). Cabriite characteristically are 3.0r(r0(222), 2.60(7X400),| .833(7X440), r.56s(7)(622). exhibits a shreddy-aggregatetexture, and individual grains are The mineral is always anhedraland forms yellow to yellowish- polysynthetically twinned. Reflectancevalues are given for three brown, rarely greenish, earthy crusts on quartz, barite and grains and for analysis No.
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • Amazonite: Mineralogy, Crystal Chemistry, and Typomorphism
    Amazonite: Mineralogy, Crystal Chemistry, and Typomorphism Mikhail Ostrooumov Institute of Earth Sciences, University of Michoacan of San Nicolas of Hidalgo, Morelia, Mexico AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2016 Elsevier Inc. All rights reserved. This English language edition is a translation of original Russian language edition titled Амазонский камень, ISBN 978-5-7325-0675-4 Copyright notice: © Издательство “Политехника“, 2008. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and kno wledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Rose Lithium-Tantalum Project Feasibility Study Ni 43 101 Technical Report
    CRITICAL ELEMENTS CORPORATION ROSE LITHIUM-TANTALUM PROJECT FEASIBILITY STUDY NI 43 101 TECHNICAL REPORT NOVEMBER 29, 2017 ROSE LITHIUM-TANTALUM PROJECT FEASIBILITY STUDY NI 43 101 TECHNICAL REPORT CRITICAL ELEMENTS CORPORATION PROJECT NO.: 161-14801-00_RPT-01_R1 DATE: NOVEMBER 2017 WSP SUITE 300 93 CEDAR STREET SUDBURY, ON, CANADA P3E 1A7 T +1 705 674-0119 WSP.COM WSP Canada Inc. REVISIONS Revision # Date Description 0 October 20, 2017 First issue to Client 1 November 29, 2017 Revised with AMF comments SIGNATURES Original document signed and stamped by Pierre-Luc Richard, P.Geo. Pierre-Luc Richard, P.Geo. Director of Geology, InnovExplo Inc. Original document signed and stamped by Patrick Frenette, B.Ing., M.Sc.A Patrick Frenette, Eng., B.Ing., M.Sc.A Senior Engineer, InnovExplo Inc. Original document signed and stamped by Florent Baril, P.Eng. Florent Baril, P.Eng. Senior Metallurgical Engineer and President, Bumigeme Inc. Original document signed and stamped by Philippe Rio Roberge, Eng. Philippe Rio Roberge, Eng. Project Director, WSP Canada Inc. Original document signed and stamped by Éric Poirier,.Eng. Éric Poirier, Eng. Director Electricity and Control, WSP Canada Inc. Original document signed and stamped by Olivier Joyal, Geo. Olivier Joyal, Geo. Vice-President Environment, WSP Canada Inc. ROSE LITHIUM-TANTALUM PROJECT WSP Project No. 161-14801-00_RPT-01_R1 November 2017 CRITICAL ELEMENTS CORPORATION Page iii SIGNATURES Original document signed and stamped by Vincent Jourdain, Ph.D., Eng. Vincent Jourdain, Ph.D., Eng. General Manager, MRB & Associates Original document signed and stamped by Denis Vachon, Eng. Denis Vachon, Eng. Chief Engineer, Langlois Mine This report was prepared by WSP Canada Inc.
    [Show full text]
  • IMA Master List
    The New IMA List of Minerals – A Work in Progress – Updated: September 2014 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). CNMMN/CNMNC approved formula : it is the chemical formula of the mineral. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]