Frontiers in High Energy Density Physics
Total Page:16
File Type:pdf, Size:1020Kb
FRONTIERS IN High Energy Density THE X-GAMES OF Physics CONTEMPORARY SCIENCE Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported by the Department of Energy under Award No. DE-FG20- 00ER54612. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the sponsors. Front Cover: Background image: Hubble Space Telescope image of the Cygnus Loop—the shock wave from a 20,000-year-old supernova in the constellation of Cygnus. Courtesy of NASA. Inset images: the Z-Machine, courtesy of Sandia National Laboratories; the OMEGA laser, courtesy of the Laboratory for Laser Energetics, University of Rochester; and results from the first gold-on-gold collision experiments at the Relativisitic Heavy Ion Collider, courtesy of Brookhaven National Laboratory. Back Cover: The target chamber at the National Ignition Facility, courtesy of Lawrence Livermore National Laboratory; and three-dimensional PIC simulation of a plasma wakefield accelerator, courtesy of R. Fonseca, Instituto Superior Técnico of Portugal, and the E-162 collaboration. Library of Congress Control Number 2003103684 International Standard Book Number 0-309-08637-X Additional copies of this report are available from: The National Academies Press, 500 Fifth Street, N.W., Washington, DC 20001; (800) 624- 6242 or (202) 334-3313 (in the Washington metropolitan area); Internet <http:// www.nap.edu>; and the Board on Physics and Astronomy, National Research Council, 500 Fifth Street, N.W., Washington, DC 20001; Internet <http://www.national-academies.org/ bpa>. Copyright 2003 by the National Academy of Sciences. All rights reserved. Printed in the United States of America The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distin- guished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering com- munities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council. www.national-academies.org COMMITTEE ON HIGH ENERGY DENSITY PLASMA PHYSICS RONALD C. DAVIDSON, Princeton University, Chair DAVID ARNETT, University of Arizona JILL DAHLBURG, General Atomics PAUL DIMOTAKIS, California Institute of Technology DANIEL DUBIN, University of California, San Diego GERALD GABRIELSE, Harvard University DAVID HAMMER, Cornell University THOMAS KATSOULEAS, University of Southern California WILLIAM KRUER, Lawrence Livermore National Laboratory RICHARD LOVELACE, Cornell University DAVID MEYERHOFER, University of Rochester BRUCE REMINGTON, Lawrence Livermore National Laboratory ROBERT ROSNER, University of Chicago ANDREW SESSLER, Lawrence Berkeley National Laboratory PHILLIP SPRANGLE, Naval Research Laboratory ALAN TODD, Advanced Energy Systems JONATHAN WURTELE, University of California, Berkeley Staff DONALD C. SHAPERO, Director MICHAEL H. MOLONEY, Study Director (from September 2001) ACHILLES D. SPELIOTOPOULOS, Study Director (November 2000-September 2001) CYRA A. CHOUDHURY, Project Associate PAMELA A. LEWIS, Project Associate NELSON QUIÑONES, Project Assistant v PLASMA SCIENCE COMMITTEE THOMAS M. O’NEIL, University of California, San Diego, Chair MICHAEL S. BARNES, Applied Materials ALLEN BOOZER, Columbia University JOHN CARY, University of Colorado, Boulder CYNTHIA A. CATTELL, University of Minnesota CARY FOREST, University of Wisconsin, Madison WALTER GEKELMAN, University of California, Los Angeles MARK J. KUSHNER, University of Illinois at Urbana-Champaign DAVID MEYERHOFER, University of Rochester CLAUDIO PELLEGRINI, University of California, Los Angeles DMITRI RYUTOV, Lawrence Livermore National Laboratory STEWART J. ZWEBEN, Princeton University Staff DONALD C. SHAPERO, Director MICHAEL H. MOLONEY, Program Officer TIMOTHY I. MEYER, Research Associate PAMELA A. LEWIS, Project Associate NELSON QUIÑONES, Project Assistant vi BOARD ON PHYSICS AND ASTRONOMY JOHN P. HUCHRA, Harvard-Smithsonian Center for Astrophysics, Chair ROBERT C. RICHARDSON, Cornell University, Vice Chair JONATHAN BAGGER, Johns Hopkins University GORDON A. BAYM, University of Illinois at Urbana-Champaign CLAUDE R. CANIZARES, Massachusetts Institute of Technology WILLIAM EATON, National Institutes of Health WENDY L. FREEDMAN, Carnegie Observatories FRANCES HELLMAN, University of California, San Diego KATHRYN LEVIN, University of Chicago CHUAN SHENG LIU, University of Maryland LINDA J. (LEE) MAGID, University of Tennessee at Knoxville THOMAS M. O’NEIL, University of California, San Diego JULIA M. PHILLIPS, Sandia National Laboratories BURTON RICHTER, Stanford University ANNEILA I. SARGENT, California Institute of Technology JOSEPH H. TAYLOR, JR., Princeton University THOMAS N. THEIS, IBM Thomas J. Watson Research Center CARL E. WIEMAN, University of Colorado/JILA Staff DONALD C. SHAPERO, Director ROBERT L. RIEMER, Senior Program Officer MICHAEL H. MOLONEY, Program Officer BRIAN DEWHURST, Research Associate TIMOTHY I. MEYER, Research Associate PAMELA A. LEWIS, Project Associate NELSON QUIÑONES, Project Assistant VAN AN, Financial Associate vii Preface The Committee on High Energy Density Plasma Physics was established in April 2001 by the National Research Council’s (NRC’s) Board on Physics and Astronomy to identify scientific opportunities and develop a unifying theme for research on matter under extreme high energy density conditions. Specifically, the committee was charged with the following tasks: (a) to review recent advances in the field of high energy density plasma phenomena, on both the laboratory scale and the astro- physical scale; (b) to provide a scientific assessment of the field, identifying compelling research opportunities and intellectual challenges; (c) to develop a unifying framework for diverse aspects of the field; (d) to outline a strategy for extending the forefronts of the field through scientific experiments at various facilities where high energy density plasmas can be created; and (e) to discuss the roles of national laboratories, universities, and industry in achieving these objectives. While this is a challenging set of tasks, the committee recognizes that now is a highly opportune time for the nation’s scientists to develop a fundamental under- standing of the physics of high energy density plasmas. The space-based and ground- based instruments for measuring astrophysical processes under extreme conditions are unprecedented in their accuracy and detail. In addition, a new generation of sophisticated laboratory systems (“drivers”), now existing or planned, creates matter under extreme high energy density conditions (exceeding 1011 J/m3), permitting the detailed exploration of physical phenomena under conditions not unlike those in astrophysical systems. High energy density