Fire Protection Guide for Electrical Installations

Total Page:16

File Type:pdf, Size:1020Kb

Fire Protection Guide for Electrical Installations Fire protection guide for electrical installations Building Connections Table of contents In the second edition of this fire protection guide, we have again compiled lots of useful information. The in- terconnections of fire protection between different types of technical building equipment are now ex- plained in even more detail. Perhaps you will find some new information in this edition which can help you in the planning and implementation of fire protec- tion systems. BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 2 Table of contents Fire protection guide for electrical installations Table of contents 1 General introduction 7 1.1 Construction law 12 1.2 The four pillars of fire protection 18 1.3 Construction products 26 1.4 Fire protection concepts 32 2 Maintenance of the fire sections – protection aim 1 36 2.1 Components closing rooms – firewalls 36 2.2 Requirements for cable penetrations - insulation 36 2.3 Proofs of usability 39 2.4 Construction types of cable and combination insulation 42 2.5 Applications and special applications 52 2.6 Selection aid and OBO Construct BSS 60 2.7 Building in old buildings 62 2.8 Cable bandages 65 3 Protection of escape routes – protection aim 2 75 3.1 What is an escape and rescue route? 75 3.2 Installations in lightweight partitions 78 3.3 Installation in false ceilings 80 3.4 Installations in underfloor systems 91 3.5 Shielding with plate material 93 3.6 Cable routing in fire protection ducts 94 4 Maintaining the electrical supply for safety-relevant electrical systems − protection aim 3 104 4.1 Where is the maintenance of electrical functionality required? 104 4.2 Tasks of maintaining electrical functionality 105 4.3 Cable systems with integrated maintenance of electrical functionality 106 4.4 Systems with maintenance of electrical functionality with fire protection ducts 113 4.5 Systems with maintenance of electrical functionality with cable support systems 115 4.6 Special features of vertical routing 130 4.7 Exceptions to maintaining electrical functionality 134 4.8 Limits of maintaining electrical functionality 136 5 Anchorings 140 5.1 Fastening principles 141 5.2 Fastening substrates 142 5.3 Types of anchors 147 5.4 Fastening on steel structures 150 5.5 Fastenings on wooden components 151 6 Fire protection from OBO Bettermann 156 6.1 A short trip through the history of "BSS" 156 6.2 Engineering and support 158 6.3 Seminars 159 7 Imprint 161 7.1 About the author 162 7.2 Sources 165 BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 3 4 BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 Chapter 1 | General introduction Chapter 1: General introduction 1 General introduction 7 1.1 Construction law 12 1.1.1 Construction law protection aims 14 1.1.2 Building classes (using the example of Germany) 14 1.2 The four pillars of fire protection 18 1.2.1 Construction fire protection 18 1.2.2 System fire protection 20 1.2.3 A company's organisational fire protection 24 1.2.4 Combative fire protection 24 1.3 Construction products 26 1.3.1 European Construction Parts Regulation 26 1.3.2 Tests, approvals and standards 28 1.4 Fire protection concepts 32 1.4.1 Planning and contents 32 1.4.2 Handling deviations and compensations 32 BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 5 Chapter 1 | General introduction "It is the people who don't know how to play with (fire) who get burned..." Oscar Wilde BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 6 Chapter 1 | General introduction 1 General introduction ing to regulations and the appropriate fire protection For years, the requirements for building safety have proofs must be available. The requirements are thus increased continuously. In this context, the sensitivity appropriately high and require comprehensive knowl- towards necessary fire protection in buildings is also edge of fire creation, fire behaviour and fire avoidance growing. as well as the range of options to limit or prevent the spread of fire. However, professional fire protection is challenging and multi-faceted. Nowadays, fire protection presents How does a fire occur? many planners and installation engineers of building Often, it is just carelessness – a forgotten candle, an equipment with almost insurmountable obstacles. In- unextinguished cigarette – or a technical defect, stallations run like networks through the complex which triggers a catastrophe. Often, it only takes a building structures and the art of the planner is to har- moment for a flame to become a fire, from the first monise the various networks, such as supply and dis- glow to a huge inferno. posal, heating, ventilation and air-conditioning, with the electrical installation. A fire requires three basic conditions: When the fire protection design has been completed, • A combustible substance the appropriate systems and components are in- • Oxygen stalled. The installation engineer is required here. And • An ignition source it is here where there are requirements which cannot be implemented without further work. A damaging fire can only develop with a particular After planning and correct implementation, the fire mixing ratio and a (not always necessary) catalyst. protection building alignment must finally be ap- proved. All the installations must be executed accord- Oxygen Heat Combustible substance With the correct proportion A fire requires three basic conditions BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 7 Chapter 1 | General introduction 2% self-ignition 0.3% lightning strike 3% work with risk of fire 2% explosion 33% electricity 4% naked flame 9% arson 9% overheating 21% miscellaneous and unknown items 17% human error Causes of fire BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 8 Chapter 1 | General introduction Fire statistics The catastrophic impact of the highly toxic and ag- In Germany alone, around 200,000 fires each year gressive fire gases are often underestimated. Esti- cause damage running to billions of euros. Every year, mates suggest that around 95% of fire victims die not around 600 people die as a result of fire and 60,000 due to the immediate effects of the fire, but of poison- are injured, of whom 10% are seriously injured. The ta- ing from the smoke. Immense property damage is al- bles below show the number of fires and fire deaths so incurred through the corrosive effects of the gases each year in the countries evaluated by CTIF (Interna- created during a fire. They may cause lasting damage tional Association of Fire and Rescue Services) [1] in to the structure of a building. 2014. At 33%, electricity is the no. 1 cause of fire. On the one hand, the electrical current is a potential source of ignition. On the other, the materials used to route and fasten electrical installations and cable insulation are usually combustible. For this reason, electrical in- stallations require special consideration for fire protec- tion. No. Total number of fires per year Number of countries States 1 800,000 – 1,500,000 1 United States UK, France, Germany, Russia, Poland, China, India, Brazil, Italy, 2 100,000 - 600,000 13 Mexico, Australia, Argentina, Pakistan Japan, Indonesia, Turkey, Canada, South Africa, Malaysia, 3 20,000 – 100,000 21 Netherlands, Ukraine, Spain, Iran and others Thailand, Algeria, Uzbekistan, Romania, Kazakhstan, Cuba, 4 10,000 – 20,000 20 Czech Republic, Belgium, Serbia, Denmark, Finland and others Iraq, Sri Lanka, Tunisia, Slovakia, Georgia, Singapore, Croatia, 5 5,000 – 10,000 15 Philippines and others 6 < 5,000 150 These countries usually have less than 5,000 fires per year Total 220 Table 1: Number of fires per year in 2010 - 2014 Total number of Number of No. States fires per year countries 1 10,000 – 25,000 3 India, Russia, Pakistan 2 1,000 – 10,000 5 USA, China, South Africa, Ukraine, Japan UK, Germany, Indonesia, Belarus, Brazil, Mexico, Turkey, Iran, South Korea, Spain, 3 200 – 1,000 20 Poland, Canada, Uzbekistan, Romania, Kazakhstan, Lithuania, Latvia and others 4 100 – 200 11 Australia, Sri Lanka, Czech Republic, Hungary, Sweden, Bulgaria, Moldova and others 5 < 100 180 These countries usually have less than 100 fire deaths per year Total 220 Table 2: Number of fire deaths per year in 2010 – 2014 BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 9 Chapter 1 | General introduction Approximately 95% of all deaths during fires are caused by smoke poisoning! Impacts of fire Heavy smoke development in a burning building is not Rapid spread of the fire just a risk to the lives and well-being of those affected. If a fire starts, then it may get out of control very The smoke also makes firefighting more difficult, be- quickly. In a moment, the flames consume all com- cause the fire brigade has difficulty in localising the bustible materials, temperatures rise and the fire source of the fire. The aim of preventive fire protection spreads in an explosive manner. Therefore, for fire must therefore also be to limit smoke development to brigades, besides actually fighting the existing flames, the area immediately affected.
Recommended publications
  • Resource Advisor Guide
    A publication of the National Wildfire Coordinating Group Resource Advisor Guide PMS 313 AUGUST 2017 Resource Advisor Guide August 2017 PMS 313 The Resource Advisor Guide establishes NWCG standards for Resource Advisors to enable interagency consistency among Resource Advisors, who provide professional knowledge and expertise toward the protection of natural, cultural, and other resources on wildland fires and all-hazard incidents. The guide provides detailed information on decision-making, authorities, safety, preparedness, and rehabilitation concerns for Resource Advisors as well as considerations for interacting with all levels of incident management. Additionally, the guide standardizes the forms, plans, and systems used by Resource Advisors for all land management agencies. The National Wildfire Coordinating Group (NWCG) provides national leadership to enable interoperable wildland fire operations among federal, state, tribal, territorial, and local partners. NWCG operations standards are interagency by design; they are developed with the intent of universal adoption by the member agencies. However, the decision to adopt and utilize them is made independently by the individual member agencies and communicated through their respective directives systems. Table of Contents Section One: Resource Advisor Defined ...................................................................................................................1 Introduction ............................................................................................................................................................1
    [Show full text]
  • Best Practice Guide to Cable Ladder and Cable Tray Systems
    Best Practice Guide to Cable Ladder and Cable Tray Systems Channel Support Systems and other Associated Supports November 2012 BEAMA Best Practice Guide to Cable Ladder and Cable Tray Systems Including Channel Support Systems and other Associated Supports Companies involved in the preparation of this Guide Contents INTRODUCTION 5 DEFINITIONS AND ABBREVIATIONS 6 1. Packing Handling and Storage 8 1.1 General Packing and Handling 8 1.2 Loading and offloading recommendations 9 1.3 Storage 11 2A. Installation of the system 12 2.1 Common tools for Installation 12 2.2 Structural characteristics 12 2.3 Support Systems 18 2.4 Straight cable ladder and cable tray lengths 29 2.5 Coupler types (refer to manufacturer’s literature) 32 2.6 Fixings 36 2.7 Fittings 36 2.8 Accessories 39 2.9 Site modification 39 2.10 Earth protection and EMC 40 2B. Installation of Cable 41 2.11 Preparation 41 2.12 Wiring Regulations 41 2.13 Power Cables 41 2.14 Data Cables 46 2.15 Expansion 46 2.16 Electro Mechanical Effects 46 3. Environment 48 3.1 Selecting the right material and finish 48 3.2 Finishes 56 3.3 Non-Metallic systems 61 3.4 Loadings 63 3.5 Temperature 65 4. Health & Safety 67 5. Maintenance 68 5.1 Inspection 68 5.2 Removal of cables 68 5.3 On site repairs 68 6. Sustainability 69 6.1 Sustainable development 69 6.2 REACH regulations 69 6.3 The management of WEEE and RoHS 69 6.4 Environmental footprint 70 7. Applicable Standards 71 Companies involved in the preparation of this Guide 72 FIGURES Figure 1: Methods of removal 9 Figure 2: Loaded beams 13 Figure
    [Show full text]
  • Advisory U.S.Deportment of Transportution Fedeml Aviation Circular
    Pc/ Advisory U.S.Deportment of Transportution Fedeml Aviation Circular Subject: POWERPLANT INSTALLATION AND Date: 2/6/W ACNo: 20- 135 PROPULSION SYSTEM COMPONENT FIRE Initiated by: ANM- 110 Change: PROTECTION TEST METHODS, STANDARDS, AND CRITERIA. 1 PURPOSE. This advisory circular (AC) provides guidance for use in demonstrating compliance with the powerplant fire protection requirements of the Federal Aviation Regulations (FAR). Included in this document are methods for fire testing of materials and components used in the propulsion engines and APU installations, and in areas adjacent to designated fire zones, as well as the rationale for these methods. Since the method of compliance presented in this AC is not mandatory, the terms "shall" and "must," as used in this AC, apply only to an applicant who chooses to follow this particular method without deviation. 2 RELATED FAR SECTIONS. The applicable FAR sections are listed in appendix 1 of this AC. 3 BACKGROUND. Although 5 1.1 of the FAR provides general definitions for the terms "fireproof" and "fire resistant," these definitions do not specify heat intensity, temperature levels, duration (exposure time), or an appropriate wall thickness or other dimensional characteristics for the purpose intended. With the advent of surface coatings (i.e., ablative/ intumescent), composites, and metal honeycomb for acoustically treated ducting, cowling, and other components which may form a part of the nacelle firewall, applicant confusion sometimes exists as to how compliance can be shown, particularly with respect to the definition of "fireproof" and "fire resistant" as defined in 5 1.1. 4 DEFINITIONS. For the purposes of this AC, the following definitions .
    [Show full text]
  • Fire Management.Indd
    Fire today ManagementVolume 65 • No. 2 • Spring 2005 LLARGEARGE FFIRESIRES OFOF 2002—P2002—PARTART 22 United States Department of Agriculture Forest Service Erratum In Fire Management Today volume 64(4), the article "A New Tool for Mopup and Other Fire Management Tasks" by Bill Gray shows incorrect telephone and fax numbers on page 47. The correct numbers are 210-614-4080 (tel.) and 210-614-0347 (fax). Fire Management Today is published by the Forest Service of the U.S. Department of Agriculture, Washington, DC. The Secretary of Agriculture has determined that the publication of this periodical is necessary in the transaction of the pub- lic business required by law of this Department. Fire Management Today is for sale by the Superintendent of Documents, U.S. Government Printing Office, at: Internet: bookstore.gpo.gov Phone: 202-512-1800 Fax: 202-512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 Fire Management Today is available on the World Wide Web at http://www.fs.fed.us/fire/fmt/index.html Mike Johanns, Secretary Melissa Frey U.S. Department of Agriculture General Manager Dale Bosworth, Chief Robert H. “Hutch” Brown, Ph.D. Forest Service Managing Editor Tom Harbour, Director Madelyn Dillon Fire and Aviation Management Editor Delvin R. Bunton Issue Coordinator The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communica- tion of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720- 2600 (voice and TDD).
    [Show full text]
  • Guidance Notes on Recommended Specifications of Junction Box and Cable Tray for Offshore Application
    Guidance Notes on Recommended Specifications of Junction Box and Cable Tray for Offshore Application GUIDANCE NOTES ON RECOMMENDED SPECIFICATIONS OF JUNCTION BOX AND CABLE TRAY FOR OFFSHORE APPLICATION FEBRUARY 2018 American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862 2018 American Bureau of Shipping. All rights reserved. ABS Plaza 16855 Northchase Drive Houston, TX 77060 USA Foreword Foreword These Guidance Notes provide ABS recommendations for the design and construction of cable trays and junction boxes. These Guidance Notes are applicable to fixed and floating offshore structures as well as drilling units. These Guidance Notes provide recommendations and best practices for standard specifications of certain electrical and instrumentation components thus improving cost efficiency (i.e., design man-hours, operation and maintenance costs), and increasing predictability of operation without compromising quality and safety in offshore structures and units. The recommendations in these Guidance Notes are based on industrial experiences, project experience, shipyard practices, manufacturer’s data sheets, national regulations, international standards, and ABS Rules. These Guidance Notes become effective on the first day of the month of publication. Users are advised to check periodically on the ABS website www.eagle.org to verify that this version of these Guidance Notes is the most current. We welcome your feedback. Comments or suggestions can be sent electronically by email to [email protected]. Terms of Use The information presented herein is intended solely to assist the reader in the methodologies and/or techniques discussed. These Guidance Notes do not and cannot replace the analysis and/or advice of a qualified professional.
    [Show full text]
  • Break-Away Firewall Connection System
    Break-Away Firewall Connection System Description and Proof-of-Concept A Technical Article by Y. Korany, Ph.D., P.Eng. M. Hatzinikolas, Ph.D., P.Eng., FCSCE May, 2013 Table of Contents Executive Summary ................................................................................................................................. 1 Background .............................................................................................................................................. 2 Description of the Break-Away Connector ............................................................................................. 4 Proof-of-Principal Testing ....................................................................................................................... 6 Summary and Conclusions ...................................................................................................................... 9 References.............................................................................................................................................. 10 Appendix: Break-Away Connection System Details ............................................................................. 11 i List of Figures Figure 1: Floor-to-Firewall Connection using a Break-away Connector ................................................ 5 Figure 2: Support Member Detail ............................................................................................................ 5 Figure 3: Test of a Fusible Member under Normal Service Conditions .................................................
    [Show full text]
  • APEGBC Technical and Practice Bulletin
    APEGBC Technical and Practice Bulletin Structural, Fire Protection and Building Envelope Professional Engineering Services for 5- and 6-Storey Wood Frame Residential Building Projects (Mid-Rise Buildings) © April 2009 All Rights Reserved Revised April 8, 2015 Table of Contents 1.0 INTRODUCTION ................................................................................................................................. 1 1.1 Purpose .................................................................................................................................. 1 1.2 Disclaimer and Exclusion of Liability ...................................................................................... 1 1.3 The Role of APEGBC ............................................................................................................... 2 1.4 Scope of Bulletin .................................................................................................................... 2 1.5 Applicability of Bulletin .......................................................................................................... 2 1.6 Acknowledgements ................................................................................................................ 3 1.7 Introduction of Terms and Abbreviations .............................................................................. 3 2.0 PROFESSIONAL PRACTICE ................................................................................................................. 4 2.1 Coordination .........................................................................................................................
    [Show full text]
  • Industrial MI Wiring Cable
    Industrial MI Wiring Cable Installation Manual for Alloy 825 Sheath Cable Wiring Systems Important Safeguards and Warnings WARNING: FIRE AND SHOCK HAZARD. nVent PYROTENAX mineral insulated (MI) industrial wiring cables must be installed in accordance with the requirements of national and local codes and standards, the installation instructions in this manual, and the customer’s specification. Read these important safeguards and carefully follow the installation instructions. • Ensure the cable has been stored properly and is in good condition prior to commencing installation. • Always use safe working practices when installing cables, observing OSHA and other national safety rules. • Store cables indoors in a clean, dry, covered area, if possible. • During the time that the cables are exposed and during cable pulling activities, protect cables from nearby or overhead work to prevent damage to the cable sheath. • Do not pull cables around corners that have sharp edges, such as corners in cable trays, or other obstructions. • Prevent damage to cables by removing any abrasions or sharp edges from surface of support system. • Damage to cables or components can cause sustained electrical arcing or fire. Do not energize cables that have been damaged. Damaged cable or terminations may need to be repaired or replaced. Damaged cable should be repaired by a qualified person. • When installing cables which may be exposed to hydrocarbon flash fires, use only steel or stainless steel in the support system. ii | nVent.com Table of Contents General Information
    [Show full text]
  • Preparation for Initial Company Operations-Student Manual
    Preparation for Initial Company Operations PICO-Student Manual 1st Edition, 5th Printing-April 2014 FEMA/USFA/NFA PICO-SM April 2014 Preparation for Initial Company Operations 1st Edition, 5th Printing Preparation for Initial Company Operations PICO-Student Manual 1st Edition, 5th Printing-April 2014 This Student Manual may contain material that is copyright protected. USFA has been granted a license to use that material only for NFA-sponsored course deliveries as part of the course materials, and it shall not be duplicated without consent of the copyright holder. States wishing to use these materials as part of state-sponsorship and/or third parties wishing to use these materials must obtain permission to use the copyright material(s) from the copyright holder prior to teaching the course. PREPARATION FOR INITIAL COMPANY OPERATIONS NOTICE: This material has been developed by the National Fire Academy (NFA) of the United States Fire Administration (USFA) for use by State and metropolitan fire training programs. NFA endorsement of this material is conditional on use without modification. NFA material, whether printed text or software, may not be used in any manner that would mislead or that would suggest or imply endorsement by NFA of any commercial product, process, or service. ii PREPARATION FOR INITIAL COMPANY OPERATIONS U.S. DEPARTMENT OF HOMELAND SECURITY UNITED STATES FIRE ADMINISTRATION NATIONAL FIRE ACADEMY FOREWORD The U.S. Fire Administration (USFA), an important component of the Department of Homeland Security (DHS), serves the leadership of this Nation as the DHS's fire protection and emergency response expert. The USFA is located at the National Emergency Training Center (NETC) in Emmitsburg, Maryland, and includes the National Fire Academy (NFA), National Fire Data Center (NFDC), and the National Fire Programs (NFP).
    [Show full text]
  • Cable Tray SHIB.FINAL.Pmd
    U.S. Department of Labor Occupational Safety and Health Administration Directorate of Technical Support & Emergency Management Office of Technical Programs and Coordination Activities Safely Installing, Maintaining and Inspecting Cable Trays Safety and Health Information Bulletin SHIB 01-16-2008 Purpose This Safety and Health Information Bulletin (SHIB) is not a standard or regulation, and it creates no new The purpose of this Safety and Health Information legal obligations. The Bulletin is advisory in nature, Bulletin is to: informational in content, and is intended to assist • Review the proper methods for safely employers in providing a safe and healthful installing, maintaining and inspecting electrical workplace. The Occupational Safety and Health Act cable trays; requires employers to comply with safety and health • Provide information regarding the hazards of standards promulgated by OSHA or by a state with overloaded cable trays; an OSHA-approved state plan. In addition, pursuant • Identify specific Occupational Safety and to Section 5(a)(1), the General Duty Clause of the Health Administration (OSHA) regulatory Act, employers must provide their employees with a requirements and National Electrical Code® workplace free from recognized hazards likely to (NEC) guidance that address the proper cause death or serious physical harm. Employers can installation and maintenance of cable trays; be cited for violating the General Duty Clause if there • Recognize electrical cable tray misuse that is a recognized hazard and they do not take can lead to electric shock and arc-flash/blast reasonable steps to prevent or abate the hazard. events and fires caused by overheating. However, failure to implement any recommendations in this SHIB is not, in itself, a violation of the General OSHA Regulations and Industry Consensus Duty Clause.
    [Show full text]
  • 3. the Electrical Cabinet
    V1.0- 9.01.2015 Page 1 of 68 Preface, Our long experience enables us to offer our customers integrated high-tech devices, from in- house development, manufactured in recognised industrial conditions and reaching the top quality for installers and end users. With standalone and modular concepts we are able to offer maximum flexibility for field applications. These innovative products are developed and manufactured to the highest level achieving an excellent level of quality. The following guide lines which include real world examples as illustrations aim to benefit planners, installers and commissioning engineers, the theme is to provide an approach to diagnostics and troubleshooting of devices housed within and around a technical cabinet. Modern devices are based on advanced electronics technologies, with this the accuracy is higher and the measurement faster than in previous generations. This greater precision and accuracy requires an environment with the same attention to detail. In the field more often these devices are mounted together with Frequency Converters (FC), Power switched mode power supply elements, commonly used for better and more accurate pumps management and ventilation systems, however due to the way these devices function they can affect other devices by propagating Electromagnetic distortion waves or electromagnetic interference (EMI) which disturbs many electronic systems, irrespective of the colour of the box or the label or mark stamped on the bottom. This booklet is the fruit of the collected experience over recent years from many staff. It is the result of knowledge exchanged and transferred, applied and implemented, we hope it will bring support for field engineers, planners, programmers, project managers, technicians and all people getting in touch with this area.
    [Show full text]
  • Technical Information Handbook Wire and Cable
    Technical Information Handbook Wire and Cable Fifth Edition Copyright © 2018 Trademarks and Reference Information The following registered trademarks appear in this handbook: Information in this handbook has been drawn from many Alumel® is a registered trademark of Concept Alloys, LLC publications of the leading wire and cable companies in the industry and authoritative sources in their latest available Chromel® is a registered trademark of Concept Alloys, LLC editions. Some of these include: Copperweld® is a registered trademark of Copperweld Steel Company CSA® is a registered trademark of the Canadian Standards Association • American Society for Testing and Materials (ASTM) CCW® is a registered trademark of General Cable Corporation • Canadian Standards Association (CSA) ® DataTwist is a registered trademark of Belden • Institute of Electrical and Electronics Engineers (IEEE) Duofoil® is a registered trademark of Belden Flamarrest® is a registered trademark of Belden • Insulated Cable Engineers Association (ICEA) Halar® is a registered trademark of Solvay Solexis • International Electrotechnical Commission (IEC) Hypalon® is a registered trademark of E. I. DuPont de Nemours & Company • National Electrical Manufacturers Association (NEMA) Hypot® is a registered trademark of Associated Research, Inc. • National Fire Protection Association (NFPA) IBM® is a registered trademark of International Business Machines Corporation Kapton® is a registered trademark of E. I. DuPont de Nemours & Company • Naval Ship Engineering Center (NAVSEC) Kevlar® is a registered trademark of E. I. DuPont de Nemours & Company • Telecommunications Industry Association (TIA) ® K FIBER is a registered trademark of General Cable Corporation • Underwriters Laboratories (UL). Kynar® is a registered trademark of Arkema, Inc. Loc-Trac® is a registered trademark of Alpha Wire Note: National Electrical Code (NEC) is a registered trademark of the National Fire Protection Association, Quincy, MA.
    [Show full text]