APEGBC Technical and Practice Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

APEGBC Technical and Practice Bulletin APEGBC Technical and Practice Bulletin Structural, Fire Protection and Building Envelope Professional Engineering Services for 5- and 6-Storey Wood Frame Residential Building Projects (Mid-Rise Buildings) © April 2009 All Rights Reserved Revised April 8, 2015 Table of Contents 1.0 INTRODUCTION ................................................................................................................................. 1 1.1 Purpose .................................................................................................................................. 1 1.2 Disclaimer and Exclusion of Liability ...................................................................................... 1 1.3 The Role of APEGBC ............................................................................................................... 2 1.4 Scope of Bulletin .................................................................................................................... 2 1.5 Applicability of Bulletin .......................................................................................................... 2 1.6 Acknowledgements ................................................................................................................ 3 1.7 Introduction of Terms and Abbreviations .............................................................................. 3 2.0 PROFESSIONAL PRACTICE ................................................................................................................. 4 2.1 Coordination .......................................................................................................................... 4 3.0 STRUCTURAL ENGINEERING PRACTICE ISSUES ................................................................................. 5 3.1 Role of the Structural Engineer of Record (SER) .................................................................... 5 3.2 Structural Engineering Services.............................................................................................. 5 3.3 Structural Design Drawing Presentation ................................................................................ 5 3.4 Design Coordination ............................................................................................................... 6 3.5 Design and Detailing of Wood Shearwalls and Diaphragms .................................................. 7 3.6 Design For Building Deformation ........................................................................................... 9 3.7 Fire And Elevator Walls ........................................................................................................ 11 3.8 Hybrid Systems ..................................................................................................................... 13 4.0 FIRE PROTECTION ENGINEERING PRACTICE ISSUES ....................................................................... 15 4.1 Fire Protection Engineering .................................................................................................. 15 4.2 Role of the Fire Protection Engineer (FPE) ........................................................................... 15 4.3 Alternative Solutions and Engineering Judgments .............................................................. 15 4.4 Fire Protection Engineering Design Services ........................................................................ 15 4.5 Effects of Shrinkage .............................................................................................................. 15 4.6 Effects of Differential Lateral Movements ........................................................................... 16 4.7 Firewalls ............................................................................................................................... 16 4.8 Elevator Walls ...................................................................................................................... 17 4.9 Reduced Loading of Fire Rated Assemblies ......................................................................... 18 4.10 Fire Separations ................................................................................................................... 18 4.11 Concealed/Void Spaces ........................................................................................................ 19 4.12 Sprinkler Systems ................................................................................................................. 20 4.13 Firefighting Assumptions ..................................................................................................... 21 4.14 Exterior Cladding .................................................................................................................. 21 4.15 Use of Wood Trim or Other Combustible Components ....................................................... 21 4.16 Soffits and Roof Overhangs .................................................................................................. 22 4.17 Coordination ........................................................................................................................ 22 4.18 Field Review ......................................................................................................................... 22 4.19 Peer Review .......................................................................................................................... 22 5.0 BUILDING ENVELOPE ENGINEERING PRACTICE ISSUES .................................................................. 23 5.1 Role of the Building Envelope Engineer (BEE) ...................................................................... 23 5.2 Building Envelope Engineering Services: Appropriate Professional Practice ...................... 23 5.3 Wood Shrinkage ................................................................................................................... 23 5.4 Change in Environmental Loads – Impact on Building Envelope ......................................... 26 5.5 Impact of Increased Wind and Rain Loads ........................................................................... 26 5.6 Increased Structural Mass .................................................................................................... 28 5.7 Maintenance And Renewal .................................................................................................. 29 6.0 QUALITY ASSURANCE/QUALITY CONTROL...................................................................................... 31 7.0 EDUCATION, TRAINING AND EXPERIENCE ...................................................................................... 33 8.0 REFERENCE AND RELATED DOCUMENTS ........................................................................................ 34 APPENDIX A: MINISTERIAL ORDER ............................................................................................................. 36 APPENDIX B: DEFINITIONS ......................................................................................................................... 41 APPENDIX C: E XAMPLE TOLERANCES ON STRUCTURAL DRAWINGS AND WOOD FRAME SHEARWALLS . 43 APPENDIX D: GUIDELINES FOR PROFESSIONAL PRACTICE FOR A FIRE PROTECTION ENGINEER ............... 45 APPENDIX E: EXAMPLE OF A STRUCTURAL DESIGN FOR A SIX STOREY WOOD FRAME RESIDENTIAL BUILDING .................................................................................................................................................... 61 1.0 INTRODUCTION This bulletin provides detailed information on the increased level of complexity involved in engineering considerations which need to be addressed in going from 4 storey to mid-rise building projects. Where relevant, guidance provided in this bulletin is applicable for use on wood frame building projects of 4 storeys or less. Examples of engineering design considerations which affect professional engineering practices in going from 4 storey to mid-rise building projects include: Increased lateral loads (wind and seismic); Increased environment loads on building envelope assemblies; Increased cumulative effect of wood shrinkage; Increased structural mass of the wood framing affecting such items as glazing and insulation which, in turn, impact the energy performance of the building; and Enhanced requirements for fire and life safety with respect to building materials and fire suppression systems. The above examples reinforce the increased need for an enhanced level of coordination of the engineering design between various engineering disciplines and with other design consultants on mid-rise building as compared to that provided on 4 storey building projects of similar construction. 1.1 PURPOSE This bulletin provides basic technical and practice guidance on structural, fire protection and building envelope professional engineering issues related to mid-rise buildings. In the areas identified standards of practice that a Member should follow in providing structural, fire protection and building envelope professional engineering services for these types of building projects are set out. This bulletin has been developed to identify issues to be taken into consideration when providing engineering services on such buildings and to provide sources of information and in some instances, design options. Engineering practices in this area will evolve as codes, standards and guides relevant to these areas of practice are updated and revised to reflect a change to the BCBC permitting
Recommended publications
  • Resource Advisor Guide
    A publication of the National Wildfire Coordinating Group Resource Advisor Guide PMS 313 AUGUST 2017 Resource Advisor Guide August 2017 PMS 313 The Resource Advisor Guide establishes NWCG standards for Resource Advisors to enable interagency consistency among Resource Advisors, who provide professional knowledge and expertise toward the protection of natural, cultural, and other resources on wildland fires and all-hazard incidents. The guide provides detailed information on decision-making, authorities, safety, preparedness, and rehabilitation concerns for Resource Advisors as well as considerations for interacting with all levels of incident management. Additionally, the guide standardizes the forms, plans, and systems used by Resource Advisors for all land management agencies. The National Wildfire Coordinating Group (NWCG) provides national leadership to enable interoperable wildland fire operations among federal, state, tribal, territorial, and local partners. NWCG operations standards are interagency by design; they are developed with the intent of universal adoption by the member agencies. However, the decision to adopt and utilize them is made independently by the individual member agencies and communicated through their respective directives systems. Table of Contents Section One: Resource Advisor Defined ...................................................................................................................1 Introduction ............................................................................................................................................................1
    [Show full text]
  • Greenpeace Deep Sea Oil Briefing
    May 2012 Out of our depth: Deep-sea oil exploration in New Zealand greenpeace.org.nz Contents A sea change in Government strategy ......... 4 Safety concerns .............................................. 5 The risks of deep-sea oil ............................... 6 International oil companies in the dock ..... 10 Where is deep-sea oil exploration taking place in New Zealand? ..................... 12 Cover: A view from an altitude of 3200 ft of the oil on the sea surface, originated by the leaking of the Deepwater Horizon wellhead disaster. The BP leased oil platform exploded April 20 and sank after burning, leaking an estimate of more than 200,000 gallons of crude oil per day from the broken pipeline into the sea. © Daniel Beltrá / Greenpeace Right: A penguin lies in oil spilt from the wreck of the Rena © GEMZ Photography 2 l Greenpeace Deep-Sea Oil Briefing l May 2012 The inability of the authorities to cope with the effects of the recent oil spill from the Rena cargo ship, despite the best efforts of Maritime New Zealand, has brought into sharp focus the environmental risks involved in the Government’s decision to open up vast swathes of the country’s coastal waters for deep-sea oil drilling. The Rena accident highlighted the devastation that can be caused by what in global terms is actually still a relatively small oil spill at 350 tonnes and shows the difficulties of mounting a clean-up operation even when the source of the leaking oil is so close to shore. It raised the spectre of the environmental catastrophe that could occur if an accident on the scale of the Deepwater Horizon disaster in the Gulf of Mexico were to occur in New Zealand’s remote waters.
    [Show full text]
  • Advisory U.S.Deportment of Transportution Fedeml Aviation Circular
    Pc/ Advisory U.S.Deportment of Transportution Fedeml Aviation Circular Subject: POWERPLANT INSTALLATION AND Date: 2/6/W ACNo: 20- 135 PROPULSION SYSTEM COMPONENT FIRE Initiated by: ANM- 110 Change: PROTECTION TEST METHODS, STANDARDS, AND CRITERIA. 1 PURPOSE. This advisory circular (AC) provides guidance for use in demonstrating compliance with the powerplant fire protection requirements of the Federal Aviation Regulations (FAR). Included in this document are methods for fire testing of materials and components used in the propulsion engines and APU installations, and in areas adjacent to designated fire zones, as well as the rationale for these methods. Since the method of compliance presented in this AC is not mandatory, the terms "shall" and "must," as used in this AC, apply only to an applicant who chooses to follow this particular method without deviation. 2 RELATED FAR SECTIONS. The applicable FAR sections are listed in appendix 1 of this AC. 3 BACKGROUND. Although 5 1.1 of the FAR provides general definitions for the terms "fireproof" and "fire resistant," these definitions do not specify heat intensity, temperature levels, duration (exposure time), or an appropriate wall thickness or other dimensional characteristics for the purpose intended. With the advent of surface coatings (i.e., ablative/ intumescent), composites, and metal honeycomb for acoustically treated ducting, cowling, and other components which may form a part of the nacelle firewall, applicant confusion sometimes exists as to how compliance can be shown, particularly with respect to the definition of "fireproof" and "fire resistant" as defined in 5 1.1. 4 DEFINITIONS. For the purposes of this AC, the following definitions .
    [Show full text]
  • Fire Management.Indd
    Fire today ManagementVolume 65 • No. 2 • Spring 2005 LLARGEARGE FFIRESIRES OFOF 2002—P2002—PARTART 22 United States Department of Agriculture Forest Service Erratum In Fire Management Today volume 64(4), the article "A New Tool for Mopup and Other Fire Management Tasks" by Bill Gray shows incorrect telephone and fax numbers on page 47. The correct numbers are 210-614-4080 (tel.) and 210-614-0347 (fax). Fire Management Today is published by the Forest Service of the U.S. Department of Agriculture, Washington, DC. The Secretary of Agriculture has determined that the publication of this periodical is necessary in the transaction of the pub- lic business required by law of this Department. Fire Management Today is for sale by the Superintendent of Documents, U.S. Government Printing Office, at: Internet: bookstore.gpo.gov Phone: 202-512-1800 Fax: 202-512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 Fire Management Today is available on the World Wide Web at http://www.fs.fed.us/fire/fmt/index.html Mike Johanns, Secretary Melissa Frey U.S. Department of Agriculture General Manager Dale Bosworth, Chief Robert H. “Hutch” Brown, Ph.D. Forest Service Managing Editor Tom Harbour, Director Madelyn Dillon Fire and Aviation Management Editor Delvin R. Bunton Issue Coordinator The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communica- tion of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720- 2600 (voice and TDD).
    [Show full text]
  • Fire Protection Guide for Electrical Installations
    Fire protection guide for electrical installations Building Connections Table of contents In the second edition of this fire protection guide, we have again compiled lots of useful information. The in- terconnections of fire protection between different types of technical building equipment are now ex- plained in even more detail. Perhaps you will find some new information in this edition which can help you in the planning and implementation of fire protec- tion systems. BSS Brandschutzleitfaden für die Elektroinstallation / en / 2019/03/22 08:28:10 08:28:10 (LLExport_04692) / 2019/03/22 08:28:13 2 Table of contents Fire protection guide for electrical installations Table of contents 1 General introduction 7 1.1 Construction law 12 1.2 The four pillars of fire protection 18 1.3 Construction products 26 1.4 Fire protection concepts 32 2 Maintenance of the fire sections – protection aim 1 36 2.1 Components closing rooms – firewalls 36 2.2 Requirements for cable penetrations - insulation 36 2.3 Proofs of usability 39 2.4 Construction types of cable and combination insulation 42 2.5 Applications and special applications 52 2.6 Selection aid and OBO Construct BSS 60 2.7 Building in old buildings 62 2.8 Cable bandages 65 3 Protection of escape routes – protection aim 2 75 3.1 What is an escape and rescue route? 75 3.2 Installations in lightweight partitions 78 3.3 Installation in false ceilings 80 3.4 Installations in underfloor systems 91 3.5 Shielding with plate material 93 3.6 Cable routing in fire protection ducts 94 4 Maintaining the electrical
    [Show full text]
  • The Monument the Monument
    The Monument The Monument Jean-Yves ANDRIEUX Alexandre GADY ABSTRACT The production of monumental architecture is an essential aspect of European cultural history. Beginning in Antiquity, and then under the influence of Christianity, an extremely diverse body was built throughout the continent, and was the source of vast stylistic movements stretching over nearly two thousand years. This sacred and secular collection was adapted and passed down until the twentieth century, both with regard to its forms and its technology, while simultaneously importing non-European motifs. Since the Enlightenment, the recognition of monuments has stimulated this cross-cultural transfer, assisted by the rise of national spaces and driven by the near-sanctuarization of the monument, which was recognized by protective laws applied during the nineteenth century in various countries. Despite destruction and the World Wars, Europe never ceased to think of itself as a monumental continent whose resources, which are today used for political and economic purposes, confer on it the best part of its global prestige. Snowshill Manor, England. In choosing to present stylized fictitious monuments on the bills of its new currency, the European Union carefully managed the sensitivity of its different member states, and in particular reminded one of the fundamental qualities of the continent's cultural history: the production of a monumental architecture that since Antiquity has represented a dual framework that is both constructed and spiritual. Europe, whose entire history is marked, through both time and space, by public and private buildings of considerable scale, consequently distinguishes itself from civilizations without architecture. Along with ancient Egypt and the Mesoamerican civilizations, it includes the oldest built heritage of humanity, as demonstrated by spectacular ruins and intact buildings, sometimes still in use.
    [Show full text]
  • Break-Away Firewall Connection System
    Break-Away Firewall Connection System Description and Proof-of-Concept A Technical Article by Y. Korany, Ph.D., P.Eng. M. Hatzinikolas, Ph.D., P.Eng., FCSCE May, 2013 Table of Contents Executive Summary ................................................................................................................................. 1 Background .............................................................................................................................................. 2 Description of the Break-Away Connector ............................................................................................. 4 Proof-of-Principal Testing ....................................................................................................................... 6 Summary and Conclusions ...................................................................................................................... 9 References.............................................................................................................................................. 10 Appendix: Break-Away Connection System Details ............................................................................. 11 i List of Figures Figure 1: Floor-to-Firewall Connection using a Break-away Connector ................................................ 5 Figure 2: Support Member Detail ............................................................................................................ 5 Figure 3: Test of a Fusible Member under Normal Service Conditions .................................................
    [Show full text]
  • Structural Design of High-Rise Buildings
    ReportTVSM-5213 ERIK HALLEBRANDandWILHELMJAKOBSSON STRUCTURAL DESIGNOFHIGH-RISEBUILDINGS STRUCTURAL DESIGN OF HIGH-RISE BUILDINGS ERIK HALLEBRAND and WILHELM JAKOBSSON Structural Master’s Dissertation Mechanics 55213HO.indd213HO.indd 1 22016-08-08016-08-08 17:22:5317:22:53 DEPARTMENT OF CONSTRUCTION SCIENCES DIVISION OF STRUCTURAL MECHANICS ISRN LUTVDG/TVSM--16/5213--SE (1-127) | ISSN 0281-6679 MASTER’S DISSERTATION STRUCTURAL DESIGN OF HIGH-RISE BUILDINGS ERIK HALLEBRAND and WILHELM JAKOBSSON Supervisors: PETER PERSSON,PhD, Div. of Structural Mechanics, LTH och JESPER AHLQUIST,MSc, Sweco. Examiner: Professor KENT PERSSON, Div. of Structural Mechanics, LTH. Copyright © 2016 Division of Structural Mechanics, Faculty of Engineering LTH, Lund University, Sweden. Printed by Media-Tryck LU, Lund, Sweden, June 2016 (Pl). For information, address: Division of Structural Mechanics, Faculty of Engineering LTH, Lund University, Box 118, SE-221 00 Lund, Sweden. Homepage: www.byggmek.lth.se Abstract High-rise buildings are exposed to both static and dynamic loads. Depending on the method used and how the structure is modelled in finite element software the results can vary. Some of the issues and modelling techniques, introduced below, are investigated in this Master’s thesis. Dynamic effects such as resonance frequencies and accelerations are considered. The variation in static results from reaction forces, overturning moments, deflections, critical buckling loads, forces between prefabricated elements and force distributions between concrete cores are investigated with different models. The models are evaluated by different elements and methods, such as construction stage analysis, to study the impact these have on the results. Simplified calculations by hand according to different standards, regulations and codes such as SS-ISO, EKS and Eurocode have been compared with finite element analyses.
    [Show full text]
  • Comparison of Environmental Performance of a Five-Storey Building Built with Cross-Laminated Timber and Concrete
    COMPARISON OF ENVIRONMENTAL PERFORMANCE OF A FIVE-STOREY BUILDING BUILT WITH CROSS-LAMINATED TIMBER AND CONCRETE Submitted to Sustainable Building Science Program By Yue (Jessie) Chen Department of Wood Science University of British Columbia Vancouver, B.C., Canada August 31, 2012 1 TABLE OF CONTENTS TABLE OF CONTENTS .......................................................................................................... 2 LIST OF TABLES .................................................................................................................... 3 LIST OF FIGURES .................................................................................................................. 4 ACKNOWLEDGEMENTS ...................................................................................................... 5 EXECUTIVE SUMMARY ....................................................................................................... 6 INTRODUCTION ..................................................................................................................... 8 CROSS-LAMINATED TIMBER ............................................................................................. 9 DISCOVERY PLACE-BUILDING 12 ................................................................................... 11 BUILDING REDESIGN ......................................................................................................... 12 Redesign of T-slabs ...........................................................................................................
    [Show full text]
  • Preparation for Initial Company Operations-Student Manual
    Preparation for Initial Company Operations PICO-Student Manual 1st Edition, 5th Printing-April 2014 FEMA/USFA/NFA PICO-SM April 2014 Preparation for Initial Company Operations 1st Edition, 5th Printing Preparation for Initial Company Operations PICO-Student Manual 1st Edition, 5th Printing-April 2014 This Student Manual may contain material that is copyright protected. USFA has been granted a license to use that material only for NFA-sponsored course deliveries as part of the course materials, and it shall not be duplicated without consent of the copyright holder. States wishing to use these materials as part of state-sponsorship and/or third parties wishing to use these materials must obtain permission to use the copyright material(s) from the copyright holder prior to teaching the course. PREPARATION FOR INITIAL COMPANY OPERATIONS NOTICE: This material has been developed by the National Fire Academy (NFA) of the United States Fire Administration (USFA) for use by State and metropolitan fire training programs. NFA endorsement of this material is conditional on use without modification. NFA material, whether printed text or software, may not be used in any manner that would mislead or that would suggest or imply endorsement by NFA of any commercial product, process, or service. ii PREPARATION FOR INITIAL COMPANY OPERATIONS U.S. DEPARTMENT OF HOMELAND SECURITY UNITED STATES FIRE ADMINISTRATION NATIONAL FIRE ACADEMY FOREWORD The U.S. Fire Administration (USFA), an important component of the Department of Homeland Security (DHS), serves the leadership of this Nation as the DHS's fire protection and emergency response expert. The USFA is located at the National Emergency Training Center (NETC) in Emmitsburg, Maryland, and includes the National Fire Academy (NFA), National Fire Data Center (NFDC), and the National Fire Programs (NFP).
    [Show full text]
  • From File to Factory: Advanced Manufacture of Engineered Wood Elements
    From file to factory: Advanced manufacture of engineered wood elements Part 1: Innovative design solutions for multi-storey timber buildings throughout the entire building process Part 2: Application to project Zembla in Kalmar, Sweden Magnus Larsson Alex Kaiser Ulf Arne Girhammar From file to factory: Advanced manufacture of engineered wood elements Part 1: Innovative design solutions for multi-storey timber buildings throughout the entire building process Part 2: Application to project Zembla in Kalmar, Sweden Magnus Larsson Alex Kaiser Ulf Arne Girhammar Luleå University of Technology Department of Engineering Sciences and Mathematics Division of Wood Science and Engineering ISSN 1402-1528 ISBN 978-91-7790-870-8 (print) ISBN 978-91-7790-884-5 (pdf) Luleå 2020 www.ltu.se FROM FILE TO FACTORY: Advanced manufacture of engineered wood elements – Part 1: Innovative design solutions for multi-storey timber buildings throughout the entire building process Magnus Larsson1, Alex Kaiser2, Ulf Arne Girhammar2,* 1 Former Luleå University of Technology, Sweden 2 Division of Wood Science and Engineering, Luleå University of Technology, 931 87 Skellefteå, Sweden ABSTRACT: “File-to-factory” processes of computer technologies is a contemporary way to both maximise efficiency throughout the building process, increase a building's performance, and be able to add interesting architectural possibilities throughout the design phase. Viewing the building as a parametric network of connected components that can be individually controlled through unique parameters may no longer be a novel architectural concept, but its application to multi-storey timber buildings is still a territory for which there are no maps. Allowing not only the notion of identicality in mechanically reproduced objects to be left behind, but replacing the idea of the object with that of the objectile, the authors investigate a novel approach that produces a set of building trajectories rather than a set of buildings, yet yields a series of buildable examples of those trajectories.
    [Show full text]
  • Up Or Out? Residential Building Height Regulations in Auckland - Understanding the Effects and Implications
    WORK IN PROGRESS – PRELIMINARY ANALYSIS NOT TO BE RELIED UPON. DO NOT QUOTE WITHOUT AUTHOR’S PERMISSION Up or out? Residential building height regulations in Auckland - understanding the effects and implications Working Paper June 2014 Presented to the New Zealand Association of Economists Annual Conference, Auckland 2-4 July 2014. WORK IN PROGRESS – PRELIMINARY ANALYSIS NOT TO BE RELIED UPON. DO NOT QUOTE WITHOUT AUTHOR’S PERMISSION © 2014 Auckland Council This publication is provided strictly subject to Auckland Council’s copyright and other intellectual property rights (if any) in the publication. Users of the publication may only access, reproduce and use the publication, in a secure digital medium or hard copy, for responsible genuine non-commercial purposes relating to personal, public service or educational purposes, provided that the publication is only ever accurately reproduced and proper attribution of its source, publication date and authorship is attached to any use or reproduction. This publication must not be used in any way for any commercial purpose without the prior written consent of Auckland Council. Auckland Council does not give any warranty whatsoever, including without limitation, as to the availability, accuracy, completeness, currency or reliability of the information or data (including third party data) made available via the publication and expressly disclaim (to the maximum extent permitted in law) all liability for any damage or loss resulting from your use of, or reliance on the publication or the information and data provided via the publication. The publication, information, and data contained within it are provided on an "as is" basis. WORK IN PROGRESS – PRELIMINARY ANALYSIS NOT TO BE RELIED UPON.
    [Show full text]