Best Practices for Reducing the Potential for Progressive Collapse in Buildings

Total Page:16

File Type:pdf, Size:1020Kb

Best Practices for Reducing the Potential for Progressive Collapse in Buildings NISTIR 7396 Best Practices for Reducing the Potential for Progressive Collapse in Buildings National Institute of Standards and Technology • Technology Administration • U.S. Department of Commerce NISTIR 7396 Best Practices for Reducing the Potential for Progressive Collapse in Buildings Bruce R. Ellingwood Georgia Institute of Technology Robert Smilowitz Weidlinger Associates Donald O. Dusenberry Simpson Gumpertz & Heger Dat Duthinh H.S. Lew National Institute of Standards and Technology Building and Fire Research Laboratory Nicholas J. Carino Consultant February 2007 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Robert C. Cresanti, Under Secretary for Technology National Institute of Standards and Technology William A. Jeffrey, Director ABSTRACT This document is intended to provide owners and practicing engineers with current “best practices” to reduce the likelihood of progressive collapse of buildings in the event of abnormal loading. The report includes a discussion of an acceptable risk approach to progressive collapse, which involves defining the threat, event control, and structural design to resist postulated event. Practical means for reducing risk for new and existing buildings are presented. An extensive review is provided of the design methods used to enhance a buildings resistance to progressive collapse. These include the indirect method (providing sufficient tie forces), the specific local resistance method (designing key elements to withstand abnormal loads), and the alternate load path method (allowing for redistribution of load in the event of the loss of a key member). Design considerations for different structural materials are summarized. The methodology for evaluating and mitigating progressive collapse potential in existing buildings is also discussed. Three appendices provide supporting information. Appendix A presents a worldwide review of progressive collapse provisions in various national design standards. Appendix B identifies knowledge gaps related to progressive collapse that require research. Appendix C provides case studies of progressive collapses. This document is not intended to provide step-by-step design guidance for practicing engineers; however, applicable design standards are referenced and summarized in Appendix A. Keywords: alternate load path; blast loading; buildings; design standards; direct method; indirect method; progressive collapse; risk; specific local resistance. iii The policy of the National Institute of Standards and Technology is to use metric units in all its published materials. Because this report is intended for the U.S. building construction industry which uses inch- pound units, it is more practical and less confusing to use inch-pound units rather than metric units within quoted text. iv PREFACE This best practices document is prepared in response to one of the recommendations from the July 2002 industry workshop on prevention of progressive collapse, which was held in Chicago, Illinois. The preparation of this document was facilitated by the Multihazard Mitigation Council (MMC) of the National Institute of Building Sciences. The MMC contracted with the three principal authors to prepare an initial draft and organized a workshop in February 2004 to solicit public comments on the initial draft document. The body of the document was prepared by three principal authors: • Dr. Bruce R. Ellingwood (Georgia Institute of Technology),Chapter 2; • Dr. Robert Smilowitz (Weidlinger Associates), Chapters 3, 4, and 5 and Appendix B. • Mr. Donald O. Dusenberry (Simpson, Gumpertz & Heger), Chapters 3, 4, and 5 and Appendix C. Contributing authors to Chapters 3, 4, and 5 included Dr. Wilkins Aquino, Mr. John Dal Pino, and Mr. James R. Cagely. Dr. Dat Duthinh of the National Institute of Standards and Technology (NIST)prepared Appendix A. Dr. H. S. Lew of NIST and Dr. Nicholas J. Carino of KT Consulting Inc. contributed to Chapters 1 and 6 and served as co-editors. To aid the understanding and use of this best practices document and to provide an opportunity for technical exchange with the principal authors, NIST and the Structural Engineering Institute of the American Society of Civil Engineers organized jointly four workshops during September and October 2006. The workshops were held in Denver, New York City, San Francisco, and Chicago. In addition, the document was posted on the Web to solicit public comments. Comments received during and subsequent to the workshops have been incorporated into this final document. Individuals who submitted comments are acknowledged for their useful suggestions. The Chicago workshop also identified a need for code provisions and design standards that will provide resistance to progressive collapse at reasonable additional design and construction costs. This need was reinforced by Recommendation 1 resulting from the NIST investigation of the collapse of the World Trade Center towers, which calls for development and adoption of code provisions and consensus standards to prevent progressive collapse in buildings. NIST is currently carrying out research in support of meeting this need. Disclaimer: Certain trade names or company products are mentioned in the text to specify adequately certain products. In no case does identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply the product is the best available for the purpose. v This page intentionally left blank. vi TABLE OF CONTENTS Abstract........................................................................................................................................................iii Preface .......................................................................................................................................................... v Table of Contents........................................................................................................................................vii List of Figures............................................................................................................................................. xv List of Tables ............................................................................................................................................xvii List of Acronyms and Abbreviations......................................................................................................... xix Chapter 1 Introduction ..................................................................................................................1 1.1 Progressive Collapse........................................................................................................................ 1 1.2 Purpose and Scope ........................................................................................................................... 2 Chapter 2 Acceptable Risk Bases ................................................................................................5 2.1 Introduction...................................................................................................................................... 5 2.2 Fundamentals of Risk Assessment for Natural and Man-Made Hazards ........................................ 6 2.2.1 Perception and Analysis of Risk........................................................................................... 6 2.2.2 Mathematical and Decision Analysis Tools ......................................................................... 8 2.2.3 Measurement of Risk............................................................................................................ 9 2.3 Hazards .......................................................................................................................................... 10 2.3.1 Aircraft Impact ................................................................................................................... 11 2.3.2 Design or Construction Error ............................................................................................. 11 2.3.3 Fire ..................................................................................................................................... 11 2.3.4 Gas Explosions................................................................................................................... 12 2.3.5 Overload Due to Occupant Misuse..................................................................................... 13 2.3.6 Transportation and Storage of Hazardous Materials .......................................................... 14 2.3.7 Vehicular Collision............................................................................................................. 14 2.3.8 Bomb Explosions ............................................................................................................... 14 2.3.9 Summary and Critical Appraisal ........................................................................................ 16 2.4 Building Vulnerability ................................................................................................................... 17 2.5 Design to Reduce Risk of Progressive Collapse............................................................................ 18 2.5.1 Performance Objective ....................................................................................................... 18 2.5.2 Performance Matrix...........................................................................................................
Recommended publications
  • Recent Developments in Progressive Collapse Design
    RECENT DEVELOPMENTS IN PROGRESSIVE COLLAPSE DESIGN David Stevens1*, Eric Martin2, Eric Williamson3, Aldo McKay1 and Kirk Marchand1 1Protection Engineering Consultants, San Antonio, Texas 2US Army Corps of Engineers, Protective Design Center, Omaha, Nebraska 3University of Texas at Austin, Austin, Texas * Corresponding Author ([email protected]) Abstract The state-of-the-art in the design of buildings to resist Progressive Collapse (PC) has continued to advance, in North America and throughout the world. Recent developments include improved design guidance, cost assessments for implementing PC design requirements, research efforts to understand key structural mechanisms for collapse resistance, and growing experience in using commercially-available design tools to better design and analyze progressive collapse events. The goal of this paper is to report upon these recent developments. Keywords: Progressive Collapse Design, Extreme Events, Structural Testing. 1. INTRODUCTION Progressive collapse design of buildings continues to be an active area of research and development. Not only is the topic important in terms of protecting building occupants but it is also an intellectually-engaging issue, with a wide spectrum of views, ranging from those who feel progressive collapse design is not needed to those who have an obligation to protect the public. The range of technical issues is quite broad also, as there are many types of structural systems and materials, the structural response is typically complex and nonlinear, and there are a number of analysis and design approaches that can be taken. Finally, there is also passionate discussion generated by those who mistake progressive collapse design for hardened structure design, those who propose risk-based approaches when it is known that there is insufficient data to assess risk and those who feel progressive collapse design should not be employed until more research is done and all answers are known.
    [Show full text]
  • Chapter 2: TRUSS and ROOF TERMINOLOGY
    Chapter 2: TRUSS AND ROOF TERMINOLOGY APEX: The highest point on a truss where the sloping top chords meet (Figures 3, 4 & 6). AXIAL FORCE: A push (compression) or pull (tension) acting along the length of a member. Usually measured in Newtons (N) or kiloNewtons (kN). (Figure 18) AXIAL STRESS: The axial force acting at a point along the length of a member, divided by the cross- sectional area of the member. Usually measured in MegaPascals (MPa) or Newtons per square millimeter (N/mm2). (Figure 18) BARGE BOARDS: Trim boards applied to gable ends of buildings. (Figure 2 & 10) BATTENS: Small-section timber members – usually 36x36 (See SANS 1783-4) spanning between trusses, connected to the top of the top chord of the truss and usually supporting a roof covering of tiles or slates (Figure 4). BATTEN CENTRES: The distance between centre lines of battens, measured along the slope of the top chord (Figure 8). BAY LENGTH: Also called PANEL LENGTH. In a truss this refers to the horizontal distance between the centres of joints or nodes in either the top or bottom chord. In a roof, it refers to the space between trusses, e.g. a single or double truss spacing where bracing occurs. (Figure 7 & 8) BRACED BAY: The space between 2 or more trusses in a roof section where bracing is positioned (Figure 2) BEAM: A solid or composite timber lintel that usually supports trusses or rafters. (Figure 11) BEAM POCKET: A void deliberately set into a wall to allow a beam, truss horn or floor truss to bear on the wall.
    [Show full text]
  • Roof Truss – Fact Book
    Truss facts book An introduction to the history design and mechanics of prefabricated timber roof trusses. Table of contents Table of contents What is a truss?. .4 The evolution of trusses. 5 History.... .5 Today…. 6 The universal truss plate. 7 Engineered design. .7 Proven. 7 How it works. 7 Features. .7 Truss terms . 8 Truss numbering system. 10 Truss shapes. 11 Truss systems . .14 Gable end . 14 Hip. 15 Dutch hip. .16 Girder and saddle . 17 Special truss systems. 18 Cantilever. .19 Truss design. .20 Introduction. 20 Truss analysis . 20 Truss loading combination and load duration. .20 Load duration . 20 Design of truss members. .20 Webs. 20 Chords. .21 Modification factors used in design. 21 Standard and complex design. .21 Basic truss mechanics. 22 Introduction. 22 Tension. .22 Bending. 22 Truss action. .23 Deflection. .23 Design loads . 24 Live loads (from AS1170 Part 1) . 24 Top chord live loads. .24 Wind load. .25 Terrain categories . 26 Seismic loads . 26 Truss handling and erection. 27 Truss fact book | 3 What is a truss? What is a truss? A “truss” is formed when structural members are joined together in triangular configurations. The truss is one of the basic types of structural frames formed from structural members. A truss consists of a group of ties and struts designed and connected to form a structure that acts as a large span beam. The members usually form one or more triangles in a single plane and are arranged so the external loads are applied at the joints and therefore theoretically cause only axial tension or axial compression in the members.
    [Show full text]
  • Progressive Collapse Design
    12/20/2017 Mitigating of Progressive Collapse in Structures Day 2 - 7 Hour Course Ahmed Khalil, Ph.D., P.E. [email protected] Ayman El Fouly, P.E. [email protected] www.appliedscienceint.com │ www.extremeloading.com ©2006‐17 Applied Science International, LLC Presenters Ahmed Khalil, Ph.D., P.E. Ayman Elfouly, P.E. • Structural Consultant • Structural Consultant • Applied Science International, LLC • Applied Science International, LLC • Member of SEI/ASCE • Member of SEI/ASCE • Member of Disproportionate • Member of Blast, Shock, & Impact Collapse Mitigation of Building Committee Structures Standards • Member of Disproportionate Collapse Technical Committee ©2006‐17 Applied Science International, LLC 1 12/20/2017 Morning Outline 1. Definition of Progressive Collapse 2. Progressive Collapse Historical Events & Evolution of Code Regulations 3. Historic Progressive Collapse Case Studies 4. Design Philosophy for Progressive Collapse Mitigation in Codes and Standards Day 2 ‐ 7 Hour Course ©2006‐17 Applied Science International, LLC What is progressive collapse? Europan Journal of Educational Studies 2(1), 2010 39 EARTHQUAKE EDUCATION IN CIVIL ENGINEERING DEPARTMENTS OF UNIVERSITIES OF TURKEY Mizan Doğan Department of Civil Engineering, Eskişehir Osmangazi University, TURKEY ©2006‐17 Applied Science International, LLC 2 12/20/2017 Definition of Progressive Collapse • Term is debated with respect to specific historical events • Was the collapse of Oklahoma City Federal Building progressive incident? • Was the collapse
    [Show full text]
  • Research and Practice on Progressive Collapse and Robustness of Building Structures in the 21St Century T ⁎ Jose M
    Engineering Structures 173 (2018) 122–149 Contents lists available at ScienceDirect Engineering Structures journal homepage: www.elsevier.com/locate/engstruct Review article Research and practice on progressive collapse and robustness of building structures in the 21st century T ⁎ Jose M. Adama, , Fulvio Parisib, Juan Sagasetac, Xinzheng Lud a ICITECH, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain b Department of Structures for Engineering and Architecture, University of Naples Federico II. Via Claudio 21, 80125 Naples, Italy c University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom d Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education, Tsinghua University, Beijing 100084, China ARTICLE INFO ABSTRACT Keywords: Extreme events (i.e. terrorist attacks, vehicle impacts, explosions, etc.) often cause local damage to building Progressive collapse structures and pose a serious threat when one or more vertical load-bearing components fail, leading to the Accidental actions progressive collapse of the entire structure or a large part of it. Since the beginning of the 21st century there has Extreme events been growing interest in the risks associated with extreme events, especially after the attacks on the Alfred P. Robustness Murrah Federal Building in Oklahoma in 1995 and on the World Trade Center in New York in 2001. The accent State of the art is now on achieving resilient buildings that can remain operational after such an event, especially when they Codes Buildings form part of critical infrastructures, are occupied by a large number of people, or are open to the public. This Review paper presents an ambitious review that describes all the main advances that have taken place since the be- ginning of the 21st century in the field of progressive collapse and robustness of buildings.
    [Show full text]
  • Builder's Guide to Trusses
    Table of Contents Roof Construction Techniques: Pro’s and Con’s . 2 Trusses: Special Benefits for Architects and Engineers . 4 Special Benefits for Contractors and Builders . 5 Special Benefits for the Owner. 5 How Does A Truss Work? . 6 Typical Framing Systems. 8 Gable Framing Variations . 11 Hip Set Framing Variations . 13 Additional Truss Framing Options Valley Sets . 15 Piggyback Trusses . 17 Typical Truss Configurations . 18 Typical Truss Shapes. 20 Typical Bearing / Heel Conditions Exterior Bearing Conditions. 21 Crushing at the Heel . 22 Trusses Sitting on Concrete Walls . 22 Top Chord Bearing. 23 Mid-Height Bearing . 23 Leg-Thru to the Bearing. 23 Tail Bearing Tray. 24 Interior Bearing Conditions . 24 Typical Heel Conditions. 25 Optional End Cosmetics Level Return. 25 Nailer . 25 Parapet. 26 Mansard . 26 Cantilever. 26 Stub . 26 Bracing Examples . 27 Erection of Trusses . 29 Temporary Bracing . 30 Checklist for Truss Bracing Design Estimates . 32 Floor Systems . 33 Typical Bearing / Heel Conditions for Floor Trusses Top Chord, Bottom Chord, and Mid-Height Bearing. 34 Interior Bearing Conditions . 35 Ribbon Boards, Strongbacks and Fire Cut Ends . 36 Steel Trusses . 37 Ask Charlie V. 38 Charlie’s Advice on Situations to Watch Out for in the Field. 41 Glossary of Terms. 42 Appendix - References. 48 1 Builders, Architects and Home Owners today have many choices about what to use in roof and floor systems Traditional Stick Framing – Carpenters take 2x6, Truss Systems – in two primary forms: 2x8, 2x10 and 2x12 sticks of lumber to the job • Metal Plate Connected Wood Trusses – site. They hand cut and fit this lumber together Engineered trusses are designed and into a roof or floor system.
    [Show full text]
  • Collapse Performance Assessment of Steel-Framed Buildings Under Fires
    Department of Civil and Environmental Engineering Stanford University Report No. The John A. Blume Earthquake Engineering Center was established to promote research and education in earthquake engineering. Through its activities our understanding of earthquakes and their effects on mankind’s facilities and structures is improving. The Center conducts research, provides instruction, publishes reports and articles, conducts seminar and conferences, and provides financial support for students. The Center is named for Dr. John A. Blume, a well-known consulting engineer and Stanford alumnus. Address: The John A. Blume Earthquake Engineering Center Department of Civil and Environmental Engineering Stanford University Stanford CA 94305-4020 (650) 723-4150 (650) 725-9755 (fax) [email protected] http://blume.stanford.edu ©2007 The John A. Blume Earthquake Engineering Center THIS PAGE LEFT BLANK ii ABSTRACT ABSTRACT The main objective of this research is to investigate the collapse performance of steel-framed buildings under fires and to contribute to the development of methods and tools for performance-based structural fire engineering. This research approach employs detailed finite element simulations to assess the strength of individual members (beams and columns) and indeterminate structural sub-assemblies (beams, columns, connections and floor diaphragms). One specific focus of the investigation is to assess the accuracy of beam and column strength design equations of the American Institute of Steel Construction (AISC) Specification for Structural Steel Buildings. The simulation results show these design equations to be up to 60 % unconservative for columns and 80-100 % unconservative for laterally unbraced beams. Alternative equations are proposed that more accurately capture the effects of strength and stiffness degradation at elevated temperatures.
    [Show full text]
  • Building Structures Fundamentals of Crossover Design
    Building Structures Fundamentals of Crossover Design REVISED EDITION By Nawari O. Nawari and Michael Kuenstle University of Florida Cover image digitally rendered by Audrey M. Gutierrez. Bassim Hamadeh, CEO and Publisher Christopher Foster, General Vice President Michael Simpson, Vice President of Acquisitions Jessica Knott, Managing Editor Kevin Fahey, Cognella Marketing Manager Jess Busch, Senior Graphic Designer Zina Craft, Acquisitions Editor Jamie Giganti, Project Editor Brian Fahey, Licensing Associate Copyright © 2013 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmit- ted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. First published in the United States of America in 2013 by Cognella, Inc. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Image attributions: 1.2g (Eurico Zimbres); 1.3b (Fir0002/Flagstaffotos); 1.4b (Fred Hsu); 1.4l (Beast from the Bush); 1.4n (Mgv81); 1.27b (Cédric Thévenet); 1.32c (Steve F.); 1.35a-c (Copyright © by Rowell Brokaw Architects); 1.36a (Copyright © 2010 by Todd Eberle); 1.36b-c (Copyright © 2010 by Studio Daniel Libeskind); 1.38 (Copyright © by ArchDaily. Reprinted with permission.); 5.33b (Copyright © 2011 by American Institute of Steel Construction); 6.1a (Tropenmuseum of the Royal Tropical Institute (KIT)); 6.5a (David Wright); 7.5 (Ad Meskens); 10.4a (Copyright © 2011 by American Institute of Steel Construction); 11.2 (Sailko); 11.61 (Copyright © 2011 by American Institute of Steel Construction).
    [Show full text]
  • Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse
    International Journal of High-Rise Buildings International Journal of June 2020, Vol 9, No 2, 127-154 High-Rise Buildings https://doi.org/10.21022/IJHRB.2020.9.2.127 www.ctbuh-korea.org/ijhrb/index.php Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse Jian Jiang1, Qijie Zhang1, Liulian Li2, Wei Chen1, Jihong Ye1, Guo-Qiang Li3,† 1Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China 2The First Construction Engineering Company Ltd. of China Construction Second Engineering Bureau, Beijing 100176, China 3State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China Abstract Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of
    [Show full text]
  • Progressive Collapse Risk Analysis: Literature Survey, Relevant Construction Standards and Guidelines
    Progressive collapse risk analysis: literature survey, relevant construction standards and guidelines Administrative Arrangement No JRC 32253-2011 with DG-HOME Activity A5 - Blast Simulation Technology Development Seweryn KOKOT George SOLOMOS 2012 Report EUR 25625 EN European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information George Solomos Address: Joint Research Centre, Via Enrico Fermi 2749, TP480, 21027 Ispra (VA), Italy E-mail: [email protected] Tel.: +39 0332 78 9916 Fax: +39 0332 78 9049 http://ipsc.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/. JRC73061 EUR 25625 EN ISBN 978-92-79-27734-4 (pdf) ISBN 978-92-79-27735-1 (print) ISSN 1831-9424 (online) ISSN 1018-5593 (print) doi:10.2788/70141 Luxembourg: Publications Office of the European Union, 2012 © European Union, 2012 Reproduction is authorised provided the source is acknowledged. Printed in Italy Progressive collapse risk analysis: literature survey,
    [Show full text]
  • Progressive Collapse Assessment of Multistory Irregular Reinforced Concrete Framed Structures Under Gravity Loads
    13TH ARAB STRUCTURAL ENGINEERING CONFERENCE UNIVERSITY OF BLIDA 1 DECEMBER 13-15, 2015 ALGERIA Progressive Collapse Assessment of Multistory Irregular Reinforced Concrete Framed Structures Under Gravity Loads Mohamed El-Bayomy* and Hamed Salem** *Assistant Lecturer, Structural Engineering Department, Faculty of Engineering, Cairo University [email protected] ** Prof. of Reinforced Concrete Structures, Faculty of Engineering, Cairo University [email protected] Abstract: Progressive collapse is a disastrous partial or total collapse which causes a massive number of causalities and injuries. It mainly occurs when a structure loses one or more of its main vertical carrying members such as columns or walls. In this research, the effect of plan structural irregularity on progressive collapse resistance was studied on multistory reinforced concrete framed structure subjected to gravity loads. The studied structure was designed according to the ‘Egyptian code of practice’ (ECP)[1] and the limits of elements' rotation were adopted from the ‘Unified Facilities Criteria’ (UFC)[2] guidelines. All the studied cases satisfied the UFC guidelines requirements for progressive collapse resistance of reinforced concrete structures. Key words: Progressive Collapse, Irregularity, Catenary action, UFC, AEM, ELS 1. INTRODUCTION Progressive collapse recently became an important point of research due to its catastrophic effect. In 1968, ‘Ronan Point apartment’, a 22-story building experienced partial collapse due to a gas explosion in the eighteenth floor which caused failure to corner load bearing walls[3]. In 1973, ‘Skyline Towers’, a 26-story building in Virginia, collapsed due to early shoring removal from an upper floor[3]. In 2013, ‘Savar building’, an eight-story building in Bangladesh, collapsed after appearance of several cracks in the columns of the ground floor[3].
    [Show full text]
  • Abnormal Loading on Buildings and Progressive Collapse. an Annotated Bibliography NATIONAL BUREAU of STANDARDS
    AlllDQ NATL INST OF STANDARDS & TECH R.I.C. A1 11 00992794 /Abnormal loading on buildings and proar TA435 .U58 V67:ll76 C.I NBg-PUB-C 1876 BUILDING SCIENCE SERIES Abnormal Loading on Buildings and Progressive Collapse. An Annotated Bibliography NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity
    [Show full text]