Abundance, Distribution, and Threats of Mammals and Trees Within the Lingadzi Namilomba Forest Reserve Within Lilongwe

Total Page:16

File Type:pdf, Size:1020Kb

Abundance, Distribution, and Threats of Mammals and Trees Within the Lingadzi Namilomba Forest Reserve Within Lilongwe MSc by Research in Environmental Studies Abundance, Distribution, and Threats of Mammals and Trees within the Lingadzi Namilomba Forest Reserve within Lilongwe, Malawi, and a Conservation Action Plan for the Protection of the Reserve. Charlotte Long 2020 School of Environment & Life Sciences MSc by Research Thesis Contents List of Tables ................................................................................................................................................ iv List of Figures ................................................................................................................................................ v List of Appendices ....................................................................................................................................... vii Acknowledgements .................................................................................................................................... viii Abstract ........................................................................................................................................................ ix Chapter One: Introduction ............................................................................................................................ 1 1. Introduction to the Lingadzi Namilomba Forest Reserve ................................................................. 1 1.1 Background ......................................................................................................................................... 5 1.2 Objectives............................................................................................................................................ 8 Chapter Two: Methods ............................................................................................................................... 11 2.1 Study site ........................................................................................................................................... 11 2.2 Preparation of transects ................................................................................................................... 12 2.3 Mammal data collection methods .................................................................................................... 15 2.3.1 Methods for species inventory .................................................................................................. 16 2.3.2 Methods for evidence data collection ....................................................................................... 17 2.4 Threats data collection ..................................................................................................................... 18 2.5 Tree data collection methods ........................................................................................................... 21 2.5.1 Tree inventory data collection ................................................................................................... 21 2.5.2 Invasive species .......................................................................................................................... 22 Chapter Three: Results ................................................................................................................................ 24 3 Mammal results ................................................................................................................................... 24 3.1 Transects ....................................................................................................................................... 24 3.2 Mammal Surveys ........................................................................................................................... 24 3.3 Distribution of mammals .............................................................................................................. 27 3.4 DISTANCE results ........................................................................................................................... 29 3.4.1 Vervet monkey ....................................................................................................................... 30 3.4.2 Common duiker...................................................................................................................... 31 3.4.3 Cape bushbuck ....................................................................................................................... 33 3.5 Tree Results ....................................................................................................................................... 35 3.5.1 Transects .................................................................................................................................... 35 3.5.2 Tree Inventory ............................................................................................................................ 35 3.5.3 Tree Counts ................................................................................................................................ 38 i 3.5.4 Invasive Species Count ............................................................................................................... 39 3.5.5 Distribution of trees ................................................................................................................... 41 Chapter Four: Discussion ............................................................................................................................ 43 4.1 The Future ......................................................................................................................................... 45 4.2 Complications of the study ............................................................................................................... 47 4.3 Solutions and suggestions ................................................................................................................. 49 Chapter Five: Conservation Action Plan ..................................................................................................... 52 5.1 Introduction ...................................................................................................................................... 52 5.2 Conceptualization ............................................................................................................................. 54 5.2.1 Project Geographic Scope .......................................................................................................... 54 5.2.2 Project Vision ............................................................................................................................. 57 5.2.3 Project Focal Conservation Targets ........................................................................................... 57 5.3 Threats .............................................................................................................................................. 60 5.3.1 Target Viability Assessment ....................................................................................................... 60 5.3.2 Current Viability Status .............................................................................................................. 65 5.4 Identifying the Critical Threats .......................................................................................................... 66 5.4.1 Current critical threats ............................................................................................................... 67 5.5 Conservation Situation Analysis: Conceptual Model ........................................................................ 73 5.6 Action Planning and monitoring ....................................................................................................... 76 5.6.1 Goals........................................................................................................................................... 76 5.6.2 Strategies ................................................................................................................................... 76 5.6.2.1 Strategy One: Habitat Management Plan: Remove Invasive Species ................................. 76 5.6.2.2. Strategy Two: School Trips and Workshops ....................................................................... 77 5.6.2.3 Strategy Three: Training and Employment ......................................................................... 78 5.6.2.4 Strategy Four: Increased Security and Zoning Management .............................................. 78 5.6.2.5 Strategy Five: Relocation of Species ................................................................................... 79 5.7 Results Chains ................................................................................................................................... 79 5.7.1 Theory of Change for Results Chain One ................................................................................... 80 5.7.2. Theory of Change for Results Chain Two .................................................................................. 82 5.7.3 Results Chain One ...................................................................................................................... 84 5.7.4 Results Chain Two ...................................................................................................................... 85 5.8 Monitoring Plan ...............................................................................................................................
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • ENDOGENOUS RETROVIRUSES in PRIMATES Katherine Brown Bsc
    ENDOGENOUS RETROVIRUSES IN PRIMATES Katherine Brown BSc, MSc Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 Abstract Numerous endogenous retroviruses (ERVs) are found in all mammalian genomes, for example, they are the source of approximately 8% of all human and chimpanzee genetic material. These insertions represent retroviruses which have, by chance, integrated into the germline and so are transmitted vertically from parents to offspring. The human genome is rich in ERVs, which have been characterised in some detail. However, in many non-human primates these insertions have not been well- studied. ERVs are subject to the mutation rate of their host, rather than the faster retrovirus mutation rate, so they change much more slowly than exogenous retroviruses. This means ERVs provide a snapshot of the retroviruses a host has been exposed to during its evolutionary history, including retroviruses which are no longer circulating and for which sequence information would otherwise be lost. ERVs have many effects on their hosts; they can be co-opted for functional roles, they provide regions of sequence similarity where mispairing can occur, their insertion can disrupt genes and they provide regulatory elements for existing genes. Accurate annotation and characterisation of these regions is an important step in interpreting the huge amount of genetic information available for increasing numbers of organisms. This project represents an extensive study into the diversity of ERVs in the genomes of primates and related ERVs in rodents. Lagomorphs (rabbits and hares) and tree shrews are also analysed, as the closest relatives of primates and rodents.
    [Show full text]
  • The Eastern Cape –
    The Eastern Cape – Revisited By Jeff Belongia A return to South Africa’s Eastern Cape was inevitable – the idea already firmly planted in my mind since my first visit in 1985. Africa, in general, has a wonderful yet strange control over the soul, and many writers have tried to express the reasoning behind it. I note this captivation and recognize the allure, and am too weak to resist. For me, Africa is what dreams are made of – and I dream of it daily. Dr. Martin Luther King was wise when he chose the phrase, “I have a dream.” He could have said, “I have a strategic plan.” Not quite the same effect! People follow their dreams. As parents we should spend more time teaching our children to dream, and to dream big. There is no Standard Operating Procedure to get through the tough times in life. Strength and discipline are measured by the depth and breadth of our dreams and not by strategic planning! The Catholic nuns at Saint Peter’s grade school first noted my talents. And they all told me to stop daydreaming. But I’ve never been able to totally conquer that urge – I dream continually of the romance of Africa, including the Eastern Cape. The Eastern Cape is a special place with a wide variety of antelope – especially those ‘pygmy’ species found nowhere else on the continent: Cape grysbok, blue duiker, Vaal rhebok, steenbok, grey duiker, suni, and oribi. Still not impressed? Add Cape bushbuck, mountain reedbuck, blesbok, nyala, bontebok, three colour phases of the Cape springbok, and great hunting for small cats such as caracal and serval.
    [Show full text]
  • South Africa, 2017
    WILDWINGS SOUTH AFRICA TOUR Wildwings Davis House MAMMALS AND BIRDS Lodge Causeway th th Bristol BS16 3JB 4 -14 SEPTEMBER 2017 LEADER – RICHARD WEBB +44 01179 658333 www.wildwings.co.uk Leopard INTRODUCTION After the success of the two previous Wildwings’ mammal tours to South Africa in 2016 we set off on the 2017 tour with high expectations and we were not to be disappointed. Despite longer than usual grass at Marrick which made spotlighting more difficult we still managed to find most of the species found on the two tours in 2016 plus a couple of real bonuses. The highlights among the 55 species of mammal seen included: A fantastic encounter with a pack of at least eight African Wild Dogs with seven three-month old puppies, plus another group of three females later the same day. A superb female Leopard on our first afternoon in Madikwe, with an awesome encounter with the same individual in the grounds of our lodge, including one of the clients finding her sitting on his balcony on our last evening! Our best views of Aardwolf to date in Marrick and prolonged views of Aardvark at the same location. Three Brown Hyaenas including one for over 30 minutes one afternoon. Two Black-footed Cats and no fewer than nine (recently-split) African Wildcats including a female with three kittens. 1 Two male Cheetahs and eight or nine Lions. Two Spotted-necked Otters feeding on a fish for over an hour at Warrenton. A superb Black Rhino and over 20 White Rhinos including a boisterous group of nine animals.
    [Show full text]
  • Animals of Africa
    Silver 49 Bronze 26 Gold 59 Copper 17 Animals of Africa _______________________________________________Diamond 80 PYGMY ANTELOPES Klipspringer Common oribi Haggard oribi Gold 59 Bronze 26 Silver 49 Copper 17 Bronze 26 Silver 49 Gold 61 Copper 17 Diamond 80 Diamond 80 Steenbok 1 234 5 _______________________________________________ _______________________________________________ Cape grysbok BIG CATS LECHWE, KOB, PUKU Sharpe grysbok African lion 1 2 2 2 Common lechwe Livingstone suni African leopard***** Kafue Flats lechwe East African suni African cheetah***** _______________________________________________ Red lechwe Royal antelope SMALL CATS & AFRICAN CIVET Black lechwe Bates pygmy antelope Serval Nile lechwe 1 1 2 2 4 _______________________________________________ Caracal 2 White-eared kob DIK-DIKS African wild cat Uganda kob Salt dik-dik African golden cat CentralAfrican kob Harar dik-dik 1 2 2 African civet _______________________________________________ Western kob (Buffon) Guenther dik-dik HYENAS Puku Kirk dik-dik Spotted hyena 1 1 1 _______________________________________________ Damara dik-dik REEDBUCKS & RHEBOK Brown hyena Phillips dik-dik Common reedbuck _______________________________________________ _______________________________________________African striped hyena Eastern bohor reedbuck BUSH DUIKERS THICK-SKINNED GAME Abyssinian bohor reedbuck Southern bush duiker _______________________________________________African elephant 1 1 1 Sudan bohor reedbuck Angolan bush duiker (closed) 1 122 2 Black rhinoceros** *** Nigerian
    [Show full text]
  • Implications for the Conservation of Key Species in the Udzungwa Mountains, Tanzania
    Genetic Patterns in Forest Antelope Populations: Implications for the Conservation of Key Species in the Udzungwa Mountains, Tanzania Submitted by Andrew Edward Bowkett, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences In September 2012 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. ABSTRACT The field of conservation genetics, in combination with non-invasive sampling, provides a powerful set of tools for investigating the conservation status and natural history of rare species that are otherwise difficult to study. A systematic literature review demonstrated that this is certainly the case for many forest- associated antelope species, which are poorly studied and yet constitute some of the most heavily hunted wildlife in Africa. The aim of the present study was to use non-invasive sampling to investigate genetic patterns in forest antelope populations in the high-biodiversity Udzungwa Mountains, Tanzania, within the context of the conservation of these species and the wider ecosystem. Genetic information was derived from faecal samples collected across the Udzungwa landscape and assigned to five antelope species (N = 618, collected 2006-09). Faecal pellet length was measured for a subset of samples but statistical assignment to species by this method proved unreliable.
    [Show full text]
  • Melliferous Plants Threatened to Disappearance in Togo
    Journal of Agriculture and Ecology Research International 3(2): 49-58, 2015; Article no.JAERI.2015.031 SCIENCEDOMAIN international www.sciencedomain.org Melliferous Plants Threatened to Disappearance in Togo M. Koudégnan Comlan1*, Akpavi Sêmihinva2 and Edorh Thérèse3 1Palynology, Algology and Paleoecology Laboratory, Botanic and Ecology Laboratory, Faculty of Sciences, University of Lome, Togo. 2Botanic and Ecology Laboratory, Faculty of Sciences, University of Lome, Togo. 3Palynology, Palynology, Algology and Paleoecology Laboratory, Faculty of Sciences, University of Lome, Togo. Authors’ contributions This work was carried out in collaboration between all authors. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JAERI/2015/11818 Editor(s): (1) Claudius Marondedze , Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia. Reviewers: (1) Anonymous, Cameroon. (2) Anonymous, USA. (3) Tzasna Hernandez, Laboratorio de Farmacognosia. UBIPRO, FES Iztacala, UNAM, Mexico. (4) Anonymous, South Africa. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=922&id=37&aid=7915 Received 5th June 2014 st Original Research Article Accepted 31 December 2014 th Published 28 January 2015 ABSTRACT Pollinic analysis and apicol surveys conducted between 2009 and 2014 on honey sampled directly in beekeeping areas or outlets have permitted discovery of 330 melliferous species Including 45 species (13.64%) which are threatened to extinction in Togo. Compared with Togolese flora, these plants threatened represent 1.29%. Belong to 43 genres, these species threatened which are food plants can be grouped into 24 families and most at risk are the Malvaceae, Anacardiaceae, Fabaceae and Annonaceae.
    [Show full text]
  • Red Data List Special Edition
    Newsletter of the Southern African Botanical Diversity Network Volume 6 No. 3 ISSN 1027-4286 November 2001 Invasive Alien Plants Part 2 Southern Mozambique Expedition Living Plant Collections: Lowveld, Mozambique, Namibia REDSABONET NewsDATA Vol. 6 No. 3 November LIST 2001 SPECIAL EDITION153 c o n t e n t s Red Data List Features Special 157 Profile: Ezekeil Kwembeya ON OUR COVER: 158 Profile: Anthony Mapaura Ferraria schaeferi, a vulnerable 162 Red Data Lists in Southern Namibian near-endemic. 159 Tribute to Paseka Mafa (Photo: G. Owen-Smith) Africa: Past, Present, and Future 190 Proceedings of the GTI Cover Stories 169 Plant Red Data Books and Africa Regional Workshop the National Botanical 195 Herbarium Managers’ 162 Red Data List Special Institute Course 192 Invasive Alien Plants in 170 Mozambique RDL 199 11th SSC Workshop Southern Africa 209 Further Notes on South 196 Announcing the Southern 173 Gauteng Red Data Plant Africa’s Brachystegia Mozambique Expedition Policy spiciformis 202 Living Plant Collections: 175 Swaziland Flora Protection 212 African Botanic Gardens Mozambique Bill Congress for 2002 204 Living Plant Collections: 176 Lesotho’s State of 214 Index Herbariorum Update Namibia Environment Report 206 Living Plant Collections: 178 Marine Fishes: Are IUCN Lowveld, South Africa Red List Criteria Adequate? Book Reviews 179 Evaluating Data Deficient Taxa Against IUCN 223 Flowering Plants of the Criterion B Kalahari Dunes 180 Charcoal Production in 224 Water Plants of Namibia Malawi 225 Trees and Shrubs of the 183 Threatened
    [Show full text]
  • Ecological Specialist Report for the Upgrade of Road D4407 Between Hluvukani and Timbavati (7.82 Km), Road D4409 at Welverdiend (6.88
    ECOLOGICAL SPECIALIST REPORT FOR THE UPGRADE OF ROAD D4407 BETWEEN HLUVUKANI AND TIMBAVATI (7.82 KM), ROAD D4409 AT WELVERDIEND (6.88 KM) AND ROAD D4416/2 BETWEEN WELVERDIEND AND _v001 ROAD P194/1 (1.19 KM) FOR THE ROAD D4416 DEVIATION 007 _ OPS IN THE EHLANZENI REGION OF THE MPUMALANGA PROVINCE PREPARED FOR: DATED: 22 January 2021 PREPARED BY: Ronaldo Retief Pr.Sci.Nat. Pr. EAPASA M · 072 666 6348 E · [email protected] T · +27 21 702 2884 26 Bell Close, Westlake Business Park F · +27 86 555 0693 Westlake 7945, Cape Town NCC Environmental Services (Pty) Ltd | Reg No: 2007/023691/07 | VAT No. 4450208915 REAL GROWTH FOR PEOPLE, PLANET AND BUSINESS www.ncc-group.co.za 1 DECLARATION OF INDEPENDENCE Specialist Name Nico-Ronaldo Retief Declaration of I declare, as a specialist appointed in terms of the National Environmental Management Independence Act (Act No 108 of 1998) and the associated 2014 Amended Environmental Impact Assessment (EIA) Regulations, that: • I act as the independent specialist in this application. • I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant. • I declare that there are no circumstances that may compromise my objectivity in performing such work. • I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity. • I will comply with the Act, Regulations, and all other applicable legislation. • I have no, and will not engage in, conflicting interests in the undertaking of the activity.
    [Show full text]
  • Woody Plants Diversity and Type of Vegetation in Non Cultivated Plain of Moutourwa, Far North, Cameroon
    Journal of Agriculture and Environment for International Development - JAEID 2016, 110 (2): 217-227 DOI: 10.12895/jaeid.20162.452 Woody plants diversity and type of vegetation in non cultivated plain of Moutourwa, Far North, Cameroon Gilbert Todou *, Moksia Froumsia, Konsala Souaré, Jeanne Flore Nnanga Department of Biological Sciences, Faculty of Science, University of Maroua, Cameroon * Corresponding author: [email protected] Submitted on 2016, 21 January; accepted on 2016, 2 August. Section: Research Paper Abstract: In order to valorize the wild vegetal resources for the efficient conservation and sustainable use in sahelo-sudanian zone of Cameroon, a study of non cultivated plain of Moutourwa was carried out to assess thefloristic richness, the specific diversity and the type of vegetation. The inventory of all trees and shrubs (dbh ≥ 2.5 cm) and the determination of the vegetation cover were done in five linear transects (20 m × 1000 m). In total, 27 families, 54 genera and 75 species were found. Caesalpiniaceae is the most abundant family that relative abundance (pi*100) is 34.41%. The most abundant genus was Piliostigma (pi*100 = 30.66%) and the most represented species was Piliostigma reticulatum (pi*100 = 29.56%; D = 53.6 stems/ha). The Simpson index (E = 0.89), the Shannon index (H = 3.2) and the equitability index of Pielou (J = 0.74) indicated that there was moderate diversity with more or less equitable species. The wild fruittree species were numerous (pi*100 = 32.76%; D = 59.7 stems/ha). A. senegalensis was the most represented (pi*100 = 9.04 %; D = 16.4) followed by Hexalobus monopetalus (pi*100 = 5.16 %; D = 9.4) and Balanites aegyptiaca (pi*100 = 3.69 %; D = 6.7).
    [Show full text]
  • Appendix a Flora Species Recorded
    APPENDIX A FLORA SPECIES RECORDED Environmental Scoping Report Plant Species Identified During Field Survey (April 2017) Trees Shrubs Forbs Grasses Cyperoids Acacia sieberiana Gnidia kraussiana Achyranthes Andropogon Cyperus digitatus aspera eucomus Albizia antunesiana Blumea alata Amaranthus Andropogon Cyperus hybridus gayanus esculentus Brachystegia Eriosema ellipticum Bidens biternata Aristida junciformis Cyperus tenax spiciformis Burkea africana Eriosema Bidens pilosa Arundinella Kylinga erecta engleranum nepalensis Combretum molle Euclea crispa C. albida Brachiaria deflexa Pycreus aethiops Cussonia arborea Gnidia kraussiana Ceratotheca triloba Cynodon dactylon Typha latifolius Ekebergia Helichrysum Conyza albida Dactyloctenium benguelensis kraussii aegyptium Faurea speciosa Indigofera arrecta Conyza welwitschii Digitaria scalarum Julbemardia Lantana camara Datura stramonium Eleusine indica globiflora Kigellia africana Leptactina Euphorbia Eragrostis benguelensis cyparissoides capensis Ochna puhra Lippia javanica Haumaniastrum Eragrostis sericeum chapelieri Ozoroa insignis Lopholaena Helichrysum Eragrostis spp. coriifolia species Parinari Maytenus Kniphofia Hemarthria curatellifolia heterophylla linearifolia altissima Strychnos spinosa Maytenus Oldenlandia Heteropogon senegalensis corymbosa contortus Vangueria infausta Pavetta Oldenlandia Hyparrhenia schumanniana herbacea filipendula Senna Rhynchosia Polygonum Hyperthelia didymobotrya resinosa senegalense dissoluta Ranunculus Melinis repens multifidus Senecio strictifolius Monocymbium
    [Show full text]
  • The Impact of Dehorning on the White Rhinoceros (Ceratotherium Simum) and the Evaluation of Novel Anti-Poaching Tactics
    The impact of dehorning on the white rhinoceros (Ceratotherium simum) and the evaluation of novel anti-poaching tactics By Samuel G. Penny November 2019 University of Brighton A thesis submitted in partial fulfilment of the requirements of the University of Brighton for the degree of Doctor of Philosophy Abstract Abstract The white rhinoceros (Ceratotherium simum) is experiencing unsustainable poaching losses fuelled by an increased demand for horn. In an attempt to reduce poaching pressure and faced with rising security costs, increasingly, private and state reserves are dehorning their rhino populations as a management approach. Despite the procedure’s wide-scale practice, significant knowledge gaps exist on how dehorning may affect the behaviour or physiology of white rhinos. Given that rhinos require continued protection after dehorning, there is also a need to develop effective, low-cost techniques to aid on- the-ground conservation efforts. This research employed a combination of field studies and laboratory experiments to address this. To determine whether dehorning affected the social behaviour of white rhinos, behavioural observations were conducted on free-ranging horned and dehorned populations in South Africa. Dehorned individuals exhibited similar agonistic and cohesive social behaviours to horned individuals. However, a rise in the rate of agonistic interactions was detected after a repeat dehorning procedure. The results also provide the first evidence of a non-territorial dominance hierarchy among free-ranging white rhinos, with the lowest ranked individuals shifting in social position after dehorning. To investigate whether white rhinos exhibited a long-term physiological response to horn removal, changes in adrenal and gonadal steroid levels were monitored in faecal samples.
    [Show full text]