Modèles Et Algorithmes Pour La Simulation Du Contact Frottant Dans Les Matériaux Complexes : Application Aux Milieux Fibreux Et Granulaires Gilles Daviet

Total Page:16

File Type:pdf, Size:1020Kb

Modèles Et Algorithmes Pour La Simulation Du Contact Frottant Dans Les Matériaux Complexes : Application Aux Milieux Fibreux Et Granulaires Gilles Daviet Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires Gilles Daviet To cite this version: Gilles Daviet. Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires. Algorithme et structure de données [cs.DS]. Université Grenoble Alpes, 2016. Français. NNT : 2016GREAM084. tel-01684673 HAL Id: tel-01684673 https://tel.archives-ouvertes.fr/tel-01684673 Submitted on 15 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Mathématiques-informatique Arrêté ministériel du 25 mai 2016 Présentée par Gilles Daviet Thèse dirigée par Florence Bertails-Descoubes préparée au sein de l’ équipe-projet Bipop, Inria et Laboratoire Jean Kuntzmann et de l’école doctorale “Mathématiques, Sciences et Technologies de l’Information, Informatique” Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes Application aux milieux fibreux et granulaires Thèse soutenue publiquement le 15 décembre 2016, devant le jury composé de : Dr Georges-Henri Cottet Professeur des universités, Université Grenoble Alpes, Président Dr Robert Bridson Adjunct Professor, University of British Columbia et Senior Principal Researcher for Visual Effects, Autodesk, Rapporteur Dr Ioan Ionescu Professeur des universités, Université Paris 13, Rapporteur Dr Jean-Marie Aubry HDR, Visual Effects Researcher, Double Negative Visual Effects, Examinateur Dr Pierre-Yves Lagrée Directeur de recherche, Institut d’Alembert, CNRS, Examinateur Dr Pierre Saramito Directeur de recherche, Laboratoire Jean Kuntzmann, CNRS, Examinateur Dr Florence Bertails-Descoubes Chargée de recherche, Inria Rhône-Alpes, Directrice de thèse Remerciements En premier lieu, je tiens bien sûr à remercier les rapporteurs et examinateurs de cette thèse, en particulier pour leur patience quand à la lecture de ce manuscrit — qui, reconnaissons le, com- porte quelques sections pouvant s’avérer arides. Je remercie également le labex PERSYVAL-Lab1 de m’avoir octroyé la bourse m’ayant finalement permis d’effectuer cette thèse, après une demi- douzaine de refus auprès d’organismes variés — et évidemment, Florence et Pierre, pour ne pas avoir désespéré malgré lesdits refus. Merci en outre à Pierre pour m’avoir initié à la simulation des fluides complexes, et Florence, pour m’avoir recueilli tout fraîchement sorti de l’Ensimag et m’avoir donné goût à ce domaine bien spécifique de l’animation pour l’informatique graphique, puis m’avoir porté en tant qu’ingénieur de recherche et doctorant. Je remercie l’équipe Bipop et l’Inria de m’avoir accueilli près de six ans, et tous ceux, permanents ou non-permanents, que j’ai pu rencontré dans ce cadre, et qui m’ont transmis quelques intuitions quand à la mécanique du contact, l’optimisation, ou d’autres sujets moins scientifiques. Merci en particulier aux précé- dents doctorants de Bipop et de la Tour pour leur rôle de modèles exemplaires : Florent, dont le manuscrit aura été une source d’informations inestimable ; Alexandre, Romain, Sofia, mes co-bureaux m’ayant préparé à la Rédaction, vraisemblablement avec succès. Merci également à mes anciens collègues de Weta Digital, qui ont largement contribué à élargir mes horizons culturels et scientifiques. Car cette thèse n’aurait pu s’achever sans les moments de détente qui l’ont entrecoupé, je remercie les InuIts (et apparentés) pour les sorties à Grenoble et ailleurs, les randonnées et autres bivouacs — et parmi eux mes illustres prédécesseurs thésards, pour m’avoir encouragé à continuer dans cette voie et pour la richesse de leurs discussions, en particulier en fin de Fam’s. Finalement, je remercie ma famille, non seulement pour son support inconditionnel mais pour avoir initié ma curiosité scientifique et mon goût pour la programmation (à travers le GW- BASIC !), sans lesquels je n’aurais sans doute jamais entrepris de telles études. Plus que tout, merci à Anaïs, qui m’aura supporté et encouragé tout au long de cette thèse, et m’aura accom- pagné au bout du monde. 1 This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir 3 Contents Remerciements 3 Contents 5 Nomenclature 11 Introduction 15 0.1 Motivation ............................................ 15 0.1.1 Granular materials .................................. 15 0.1.2 Dynamics of hair and fur .............................. 16 0.1.3 Target applications .................................. 16 0.2 Contacts and dry friction ................................... 18 0.2.1 Impacts ......................................... 18 0.2.2 Dry friction ....................................... 19 0.2.3 Other friction laws .................................. 20 0.2.4 Discrete simulation of complex materials with frictional contacts . 22 0.3 Continuum modeling of dry friction ............................ 23 0.3.1 Yield-stress flows ................................... 23 0.3.2 Frictional yield surfaces ............................... 23 0.3.3 Shearing granular flows ............................... 25 0.3.4 Other complex materials ............................... 26 0.4 Synopsis ............................................. 26 I Numerical treatment of friction in discrete contact mechanics 29 1 Mathematical structure of Coulomb friction 31 1.1 Coulomb’s friction law ..................................... 31 1.1.1 Second-Order Cone .................................. 31 1.1.2 Disjunctive formulation of the Signorini-Coulomb conditions . 32 1.1.3 Alart–Curnier function ................................ 33 1.2 Implicit Standard Materials .................................. 34 1.2.1 Generalized Standard Materials .......................... 34 1.2.2 Implicit Standard Materials ............................. 35 1.3 Application to Drucker–Prager plasticity .......................... 38 1.3.1 Symmetric tensors .................................. 38 1.3.2 Drucker–Prager yield surface ............................ 39 1.3.3 Dilatancy and non-associated Drucker–Prager flow rule . 40 1.3.4 Bipotential and reformulations of the Drucker–Prager flow rule . 41 1.3.5 Viscoplasticity ..................................... 44 2 Modeling contacts within the Discrete Element Method 47 2.1 A few mechanical models for rigid and deformable bodies in finite dimension . 47 2.1.1 Rigid-body dynamics ................................. 47 2.1.2 Lumped system .................................... 51 5 CONTENTS 2.1.3 Lagrangian mechanics ................................ 52 2.1.4 Discussion ....................................... 54 2.2 Contacts ............................................. 55 2.2.1 Continuous-time equations of motion with contacts . 56 2.2.2 Time integration .................................... 57 2.2.3 Collision detection .................................. 60 2.3 Discrete Coulomb Friction Problem ............................. 61 2.3.1 Reduced formulation ................................. 61 2.3.2 Fixed-point algorithms and existence criterion . 62 3 Solving the Discrete Coulomb Friction Problem 67 3.1 Global strategies ........................................ 67 3.1.1 Pyramidal friction cone ............................... 67 3.1.2 Complementarity functions ............................. 68 3.1.3 Optimization-based methods ............................ 69 3.2 Interior-point methods ..................................... 70 3.2.1 Second-Order Cone Programs ........................... 70 3.2.2 Discussion ....................................... 71 3.3 First-order proximal methods ................................ 71 3.3.1 Proximal operator ................................... 71 3.3.2 Projected Gradient Descent ............................. 73 3.3.3 Primal–dual proximal methods ........................... 74 3.4 Splitting methods ........................................ 78 3.4.1 Operator splitting ................................... 78 3.4.2 Convergence properties ............................... 79 3.4.3 Performance ...................................... 80 3.4.4 Discussion ....................................... 82 4 A Robust Gauss–Seidel Solver and its Applications 83 4.1 Hybrid Gauss–Seidel algorithm ............................... 83 4.1.1 SOC Fischer-Burmeister function .......................... 83 4.1.2 Analytical solver .................................... 85 4.1.3 Full algorithm ..................................... 88 4.2 Application to hair dynamics ................................. 89 4.2.1 Hair simulation in Computer Graphics ...................... 91 4.2.2 Full-scale simulations ................................. 92 4.2.3 Friction solvers comparisons ............................ 94 4.2.4 Limitations ....................................... 97 4.3 Application to cloth simulation ............................... 98 4.3.1 Nodal algorithm .................................... 98 4.3.2 Results ..........................................100
Recommended publications
  • 6Th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017
    6th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017 Jackson School of Geosciences GSEC Graduate Student Executive Committee Welcome to the 6th Annual Jackson School Research Symposium It is with great pleasure we welcome you all to the 6th Annual Jackson School Research Symposium at UT-Austin! This symposium would not have been possible without the hard work of student volunteers, the support of faculty/research scientists, and generous support from ConocoPhillips. Thank you for taking part in supporting our students and growing research program within the Jackson School. Enjoy the posters! Schedule of Presentations and Events Breakfast, A.M. session poster set-up...............................................8:30 a.m. Early Career Graduate (ECG) posters......................................9:00-11:30 a.m. Late Career Masters (LCM) posters.........................................9:00-11:30 a.m. Lunch, A.M. session poster take-down.............................................11:30 a.m. P.M. session poster set-up................................................................12:30 p.m. Undergraduate (U) posters….....................................................1:00-3:30 p.m. Late Career PhD (LCPhD) posters.............................................1:00-3:30 p.m. Happy hour/judging............................................................................3:30 p.m. Awards/closing....................................................................................4:00 p.m. ii Table of Contents Program
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Redalyc.Guillaume Amontons
    Revista CENIC. Ciencias Químicas ISSN: 1015-8553 [email protected] Centro Nacional de Investigaciones Científicas Cuba Wisniak, Jaime Guillaume Amontons Revista CENIC. Ciencias Químicas, vol. 36, núm. 3, 2005, pp. 187-195 Centro Nacional de Investigaciones Científicas La Habana, Cuba Disponible en: http://www.redalyc.org/articulo.oa?id=181620584008 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista CENIC Ciencias Químicas, Vol. 36, No. 3, 2005. Guillaume Amontons Jaime Wisniak. Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105. [email protected] Recibido: 24 de agosto de 2004. Aceptado: 28 de octubre de 2004. Palabras clave: barómetro, termometría, cero absoluto, higrómetro, telégrafo, máquina de combustión externa, fricción en las máquinas. Key words: barometer, thermometry, absolute zero, hygrometer, telegraph, external-combustion machine, friction in machines. RESUMEN. Guillaume Amontons (1663-1705) fue un experimentador que se de- Many instruments had been de- dicó a la mejora de instrumentos usados en física, en particular, el barómetro y el veloped to measure in a gross man- termómetro. Dentro de ellos se destacan, en particular, un barómetro plegable, ner the humidity of air. Almost all un barómetro sin cisterna para usos marítimos, y un higrómetro. Experimentó systems made use of the hygro- con el termómetro de aire e hizo notar que con dicho aparato el máximo frío sería scopic properties of vegetable or aquel que reduciría el resorte (presión) del aire a cero, siendo así, el primero que animal fibers such as hemp, oats, dedujo la presencia de un cero absoluto de temperatura.
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]
  • Lick Observatory Records: Photographs UA.036.Ser.07
    http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory.
    [Show full text]
  • 304 Index Index Index
    _full_alt_author_running_head (change var. to _alt_author_rh): 0 _full_alt_articletitle_running_head (change var. to _alt_arttitle_rh): 0 _full_article_language: en 304 Index Index Index Adamson, Robert (1821–1848) 158 Astronomische Gesellschaft 216 Akkasbashi, Reza (1843–1889) viiii, ix, 73, Astrolog 72 75-78, 277 Astronomical unit, the 192-94 Airy, George Biddell (1801–1892) 137, 163, 174 Astrophysics xiv, 7, 41, 57, 118, 119, 139, 144, Albedo 129, 132, 134 199, 216, 219 Aldrin, Edwin Buzz (1930) xii, 244, 245, 248, Atlas Photographique de la Lune x, 15, 126, 251, 261 127, 279 Almagestum Novum viii, 44-46, 274 Autotypes 186 Alpha Particle Spectrometer 263 Alpine mountains of Monte Rosa and BAAS “(British Association for the Advance- the Zugspitze, the 163 ment of Science)” 26, 27, 125, 128, 137, Al-Biruni (973–1048) 61 152, 158, 174, 277 Al-Fath Muhammad Sultan, Abu (n.d.) 64 BAAS Lunar Committee 125, 172 Al-Sufi, Abd al-Rahman (903–986) 61, 62 Bahram Mirza (1806–1882) 72 Al-Tusi, Nasir al-Din (1202–1274) 61 Baillaud, Édouard Benjamin (1848–1934) 119 Amateur astronomer xv, 26, 50, 51, 56, 60, Ball, Sir Robert (1840–1913) 147 145, 151 Barlow Lens 195, 203 Amir Kabir (1807–1852) 71 Barnard, Edward Emerson (1857–1923) 136 Amir Nezam Garusi (1820–1900) 87 Barnard Davis, Joseph (1801–1881) 180 Analysis of the Moon’s environment 239 Beamish, Richard (1789–1873) 178-81 Andromeda nebula xii, 208, 220-22 Becker, Ernst (1843–1912) 81 Antoniadi, Eugène M. (1870–1944) 269 Beer, Wilhelm Wolff (1797–1850) ix, 54, 56, Apollo Missions NASA 32, 231, 237, 239, 240, 60, 123, 124, 126, 130, 139, 142, 144, 157, 258, 261, 272 190 Apollo 8 xii, 32, 239-41 Bell Laboratories 270 Apollo 11 xii, 59, 237, 240, 244-46, 248-52, Beg, Ulugh (1394–1449) 63, 64 261, 280 Bergedorf 207 Apollo 13 254 Bergedorfer Spektraldurchmusterung 216 Apollo 14 240, 253-55 Biancani, Giuseppe (n.d.) 40, 274 Apollo 15 255 Biot, Jean Baptiste (1774–1862) 1,8, 9, 121 Apollo 16 240, 255-57 Birt, William R.
    [Show full text]
  • A Selection of New Arrivals September 2017
    A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation).
    [Show full text]
  • Unbroken Meteorite Rough Draft
    Space Visitors in Kentucky: Meteorites and Asteroid “Ida.” Most meteorites originate from asteroids. Meteorite Impact Sites in Kentucky Meteorite from Clark County, Ky. Mercury Earth Saturn Venus Mars Neptune Jupiter William D. Ehmann Asteroid Belt with contributions by Warren H. Anderson Uranus Pluto www.uky.edu/KGS Special thanks to Collie Rulo for cover design. Earth image was compiled from satellite images from NOAA and NASA. Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Space Visitors in Kentucky: Meteorites and Meteorite Impact Sites in Kentucky William D. Ehmann Special Publication 1 Series XII, 2000 i UNIVERSITY OF KENTUCKY Collie Rulo, Graphic Design Technician Charles T. Wethington Jr., President Luanne Davis, Staff Support Associate II Fitzgerald Bramwell, Vice President for Theola L. Evans, Staff Support Associate I Research and Graduate Studies William A. Briscoe III, Publication Sales Jack Supplee, Director, Administrative Supervisor Affairs, Research and Graduate Studies Roger S. Banks, Account Clerk I KENTUCKY GEOLOGICAL SURVEY Energy and Minerals Section: James A. Drahovzal, Head ADVISORY BOARD Garland R. Dever Jr., Geologist V Henry M. Morgan, Chair, Utica Cortland F. Eble, Geologist V Ron D. Gilkerson, Vice Chair, Lexington Stephen F. Greb, Geologist V William W. Bowdy, Fort Thomas David A. Williams, Geologist V, Manager, Steven Cawood, Frankfort Henderson office Hugh B. Gabbard, Winchester David C. Harris, Geologist IV Kenneth Gibson, Madisonville Brandon C. Nuttall, Geologist IV Mark E. Gormley, Versailles William M. Andrews Jr., Geologist II Rosanne Kruzich, Louisville John B. Hickman, Geologist II William A. Mossbarger, Lexington Ernest E. Thacker, Geologist I Jacqueline Swigart, Louisville Anna E.
    [Show full text]
  • Acceleration, 274 Centrifugal, 236 Acceleration of Gravity, 230, 274
    Cambridge University Press 978-1-107-00653-9 — Geodynamics Donald Turcotte , Gerald Schubert Index More Information Index acceleration, 274 approximation foreland, 157 centrifugal, 236 Dupuit, 430 marginal, 15 acceleration of gravity, 230, 274 finite difference, 496 ringed, 68 accreting plate boundaries, 2, 7 aquifer, 272 sedimentary, 92, 155, 212 accretionary plate margins, 52 confined porous, 428 bathymetry, 209 accretionary prism, 12 unconfined, 430 beach terraces activation energy, 348 aquifers, 162, 264, 425 elevated, 280 activation volume, 348 arc bedding planes, 169 active continental margins, 45 island, 4 behavior adiabat, 219 Archimedes’ principle, 94, 298 adiabatic compressional heating, 220 argon, 479 Newtonian fluid, 61 adiabatic temperature gradient, 219 arm non-Newtonian fluid, 61 admittance, 253 failed, 43 plastic, 379 age dating, 484 moment, 100, 139 stick–slip, 386, 389, 399, 402 age of the Earth, 183, 187 aspect ratio, 320 belt age of the lithosphere, 189 asteroid, 79 thrust, 48 age of the seafloor, 190 asthenosphere, 2 benchmarks, 116 age of the solar system, 465, 470 atmospheric erosion and deposition, bending, 130, 138 Airy compensation, 254 76 cylindrical, 139 Airy geoid anomaly, 256 aulacogen, 43 plastic, 292 albedo, 84 Avogadro’s number, 340 plate, 381 allochthonous sheet, 397 axes of strain bending moment, 139 alluvial fan, 225 principal, 115 critical, 382 Alvin,56 axis Amonton’s law, 390 principal, 102 bending of the elastic lithosphere, 514 analogy azimuth biharmonic equation, 276 ping-pong ball, 12 magnetic, 25 binary
    [Show full text]
  • ANTIFIERS *Europe
    DOCUMENT RESUME ED 111 494 PS 008 006 AUTHOR Mugglin, Gustav TITLE Children's Recreation Activities: Facilities and Animation. INSTITUTION Council for Cultural Cooperation, Stra'S'bourg (France). PUB DATE 74 NOTE. 177p. AVAILABLE FROM Manhattan Publishing Colipany, 225 Lafayette Street, New York, New York. 10012 (Paper, $6.00) EDRS PRICE MF-$0.76 Plus Pottage. HC Not Available from ERRS., ,DESCRIPTORS Administration; Communit,Recreaticn Programs; _Curriculum; *Elementary Secondary Education; *Foreign Countries; *Physical Activities; Physidal Development; Physical Facilities; Playground Activities; *Playgrounds; *Recreational Activities; Salaries; Theater Arts; Training ANTIFIERS *Europe ABSTRACT This study assessed recreational facilities for European children 5 to 15 years of age, and discussed the best means of meeting needs. The first chapter reviews the educational aspects of children's playr-including physical, social, andcreative development7-as they pertain to various age groups. .The second chapter considers,the types of facilities that can be used for play and,recreation. These include play areas in houses and flats, outdoor playgrounds, recreational areas and...buildings within and near towns and villages, and camps and family vacation facilities. In Chapter 3, examples of existing European facilities, similar to those suggested in Chapter -2 are described; excellent diagrams, maps fnd photographs accompany the text. Chapter 4..concludes the study with an outline of methods of selecting, training and managing recreation center staff, members, including directors, auxiliary leaders, and part-time or voluntary leaders and helpers. Examples of training programs from several countries are presented in detail. (ED) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from, other sources. ERIC makes every effort * * to obtain the best copy available.
    [Show full text]
  • Histoire Cosmique Des Hommes
    MICHEL-ALAIN COMBES L’HISTOIRE COSMIQUE DES HOMMES 1 2 Michel-Alain COMBES L’HISTOIRE COSMIQUE DES HOMMES © Michel-Alain Combes, 2011 3 4 SOMMAIRE Chapitre 1 : Catastrophes célestes dans l'Antiquité , p. 7 Chapitre 2 : Déluge et catastrophisme biblique , p. 21 Chapitre 3 : La grande époque des catastrophistes , p. 37 Chapitre 4 : Impactisme et catastrophisme aujourd'hui , p. 59 Chapitre 5 : Comètes et astéroïdes : la menace du ciel , p. 75 Chapitre 6 : La comète brisée , p. 99 Chapitre 7 : Toungouska 1908 , p. 121 Chapitre 8 : Les fausses pistes , p. 141 Chapitre 9 : Les cataclysmes terrestres , p. 167 Chapitre 10 : Les cataclysmes cosmiques , p. 191 Chapitre 11 : L'inconnu, l'avenir , p. 225 Chapitre 12 : Une révolution scientifique et culturelle , p. 247 Bibliographie, p. 259 5 6 CHAPITRE PREMIER CATASTROPHES CÉLESTES DANS L'ANTIQUITÉ Le souvenir obsessionnel de grands cataclysmes L'idée que la Terre a souvent été victime de catastrophes de grande ampleur, d'origine cosmique ou terrestre, n'est pas nouvelle, loin de là. C'était un point commun à toutes les mythologies des peuples anciens, aussi loin que l'on remonte dans le temps, même si le nombre et les causes de ces cataclysmes variaient d'une mythologie à l'autre. Des concepts comme le Chaos , le Déluge ou la chute du ciel faisaient partie de leur histoire et de leur imaginaire. Dans ce chapitre, il est question de certains aspects historiques et mythologiques du problème. Ce sera l'occasion de retrouver quelques grands noms de l'Antiquité qui s'intéressaient au passé et à l'avenir de la Terre, désirant percer les secrets de l'un et de l'autre, et de rappeler aussi quelques textes représentatifs explicites, textes qui ont eu la chance de parvenir jusqu'à nous, contrairement à d'autres qui sont malheureusement perdus.
    [Show full text]