304 Index Index Index

Total Page:16

File Type:pdf, Size:1020Kb

304 Index Index Index _full_alt_author_running_head (change var. to _alt_author_rh): 0 _full_alt_articletitle_running_head (change var. to _alt_arttitle_rh): 0 _full_article_language: en 304 Index Index Index Adamson, Robert (1821–1848) 158 Astronomische Gesellschaft 216 Akkasbashi, Reza (1843–1889) viiii, ix, 73, Astrolog 72 75-78, 277 Astronomical unit, the 192-94 Airy, George Biddell (1801–1892) 137, 163, 174 Astrophysics xiv, 7, 41, 57, 118, 119, 139, 144, Albedo 129, 132, 134 199, 216, 219 Aldrin, Edwin Buzz (1930) xii, 244, 245, 248, Atlas Photographique de la Lune x, 15, 126, 251, 261 127, 279 Almagestum Novum viii, 44-46, 274 Autotypes 186 Alpha Particle Spectrometer 263 Alpine mountains of Monte Rosa and BAAS “(British Association for the Advance- the Zugspitze, the 163 ment of Science)” 26, 27, 125, 128, 137, Al-Biruni (973–1048) 61 152, 158, 174, 277 Al-Fath Muhammad Sultan, Abu (n.d.) 64 BAAS Lunar Committee 125, 172 Al-Sufi, Abd al-Rahman (903–986) 61, 62 Bahram Mirza (1806–1882) 72 Al-Tusi, Nasir al-Din (1202–1274) 61 Baillaud, Édouard Benjamin (1848–1934) 119 Amateur astronomer xv, 26, 50, 51, 56, 60, Ball, Sir Robert (1840–1913) 147 145, 151 Barlow Lens 195, 203 Amir Kabir (1807–1852) 71 Barnard, Edward Emerson (1857–1923) 136 Amir Nezam Garusi (1820–1900) 87 Barnard Davis, Joseph (1801–1881) 180 Analysis of the Moon’s environment 239 Beamish, Richard (1789–1873) 178-81 Andromeda nebula xii, 208, 220-22 Becker, Ernst (1843–1912) 81 Antoniadi, Eugène M. (1870–1944) 269 Beer, Wilhelm Wolff (1797–1850) ix, 54, 56, Apollo Missions NASA 32, 231, 237, 239, 240, 60, 123, 124, 126, 130, 139, 142, 144, 157, 258, 261, 272 190 Apollo 8 xii, 32, 239-41 Bell Laboratories 270 Apollo 11 xii, 59, 237, 240, 244-46, 248-52, Beg, Ulugh (1394–1449) 63, 64 261, 280 Bergedorf 207 Apollo 13 254 Bergedorfer Spektraldurchmusterung 216 Apollo 14 240, 253-55 Biancani, Giuseppe (n.d.) 40, 274 Apollo 15 255 Biot, Jean Baptiste (1774–1862) 1,8, 9, 121 Apollo 16 240, 255-57 Birt, William R. (1804–1881) 57 Apollo 17 257, 258 Blagg, Mary (1858–1944) 60 APPLAUSE 16, 218, 219, 225 Blanchard Bolton, William (1848–1899) 277 Arago, Dominique François Jean (1786–1853) Book on the Constellations of the Fixed Stars 62 7, 8, 114, 116-19, 121, 122, 127, 136, 139, 140, Bonn Observatory v, 15, 188, 191, 196, 199, 141, 145, 150, 276 276, 279 Archer, Frederick Scott (1813–1857) 276 Borri, Christoforo (d. 1632) 40, 274 Arcturus 193 Boyle, Willard Sterling 270, 279 Argelander, F.W.A. (1799–1875) 189, 190 Brahe, Tycho (1546–1601) 41, 64, 97, 100, 108 Argelander Institute 188, 190 Braun, Adolphe (1812–1877) 160 Armillary sphere 63, 96 British East India Company 95 Armstrong, Neil (1930–2012) xii, 244-46, 248, Brunel, Isambard Kingdom (1806–1859) 178, 261, 262 179 Asada, Goryu (1734–1799) ix, 97-99, 103, 275 Buchwald, Hugo (1836–1919) 81 © Koninklijke Brill NV, Leiden, 2018 | doi 10.1163/9789004298873_013 Index 305 Calar Alto Observatory 210, 216 Crampton, Josiah (n.d.) xi, 168, 170, 172 Calderon, Phillip H. (1833–1898) 170, 171 Cranch Bond, William (1789–1859) x, 135, Calotype 8, 151, 158, 159, 276 137, 276 Capuchin missions 21, 64, 67, 69 Crater Caramuel y Lobkowitz, Juan (1606–1682) 47 Crater Alphonsus 237, 279 Carlhian, Francois (1817–1870) 76 Crater Archimedes 233 Carpenter, James (1840–1899) 131, 157, 162, Crater Aristillus 214, 233 171, 172, 176, 177, 183, 185, 186, 278 Crater Asada ix, 98, 99 Carte du Ciel 120, 208 Crater Autolycus 214 Cassini, Giovanni Domenico (1625–1712) 73, Crater Cassini 214 108 Crater Copernicus viii, xi, xii, 13, 14, 105, Catalina Observatory 231 109, 159, 161, 191, 241 CCD (charge-coupled device) camera 32, 145, Crater Eratosthenes 151 206, 217, 270-2, 279, 280 Crater Gassendi viii, 11-14 Dedicated, Cooled Astronomical CCD Crater Gill 265 Cameras 270 Crater Kepler 105 Center coordinates 219 Crater Maurolycus x, 153-55 Chamber, Robert (1802–1871) 175 Crater Mösting 200, 202 Chandrayaan 1 267, 280 Crater Plato x, 105, 109, 148 Chandrayaan 2 267 Crater Shackleton 267 Chang’e 1 266 Crater Tycho xii, 100, 105, 109, 237, 238 Chang’e 2 266 Crater Walter 159, 161 Chang’e 3 266 Crookes, William (1832–1919) 9 Crystal Palace Exhibition 135 Chang’e 5 266 Charte der Gebirge des Mondes (1878) viii, Daguerre, Louis Jacques Mandé (1787–1851) 55, 191 7, 8, 114-16, 119, 122, 123, 125, 127, 134, 136, Chinese astronomy 22, 95 150, 275, 276 Chirognomy 178 Daguerreotype x, 5, 7-9, 74, 115, 117, 119, Clark refractor of the Lowell Observatory 60 121-23, 135, 137, 139, 140, 142, 150, 275, 276 cm 269 D’Arpentingy, Casimir Stanislaus (b. 1798) Clementine xii, 262, 263, 280 178 CLEP (The Chinese Lunar Exploration Dar al-Funun (Polytechnic University) ix, 64, Program) 265 71, 72, 74, 75, 78-80, 84, 87, 276, 277 Close-up stereoscopic photography 250 Da Vinci, Leonardo (1452–1519) 34 CNSA (China National Space Administration) Della Valle, Pietro (1586–1652) 64 vii, 265-67 de la Beche, Sir Henry (1796–1855) 156, 157, Colbert, Jean-Baptiste (1619–1683) 67 181 Collins, Michael (1930) 242, 244, 258 de la Hire, Philippe (1640–1718) 108 Collodion x, 6, 9, 117, 137, 159, 160, 163, 165, de la Rue, Warren (1815–1889) 26-29, 128, 276, 277 137, 138, 144, 174, 276, 277 Comatic aberration 222 De Peiresc, Nicolas (1580–1637) 40 Comier, L’Abbé Claude (n.d.) 67 Delaroche, Paul (1797–1856) 122 Command Module Pilots 240 de Saussure, Horace-Bénédicte (1740–1799) Consolidated Lunar Atlas, the xii, 231, 232 140 Copernican heliocentricism 97 Desbarrolles, Adolphe (1801–1886) 178 Copernicus 44, 100, 110 Dickert, Thomas (1801–1883) 56, 190, 191, 276 Cosmographical Society of Nuremberg 50 Discovery of a world in the Moone (1638) 49 Couder, André (1897–1979) 268 Divini, Eustachiol (1610–1685) 44.
Recommended publications
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Feature of the Month – January 2016 Galilaei
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    https://ntrs.nasa.gov/search.jsp?R=19710025504 2020-03-11T22:36:49+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6 X t B ICC"m date: July 16, 1971 955 L'Enfant Plaza North, S. W Washington, D. C. 20024 to Distribution B71 07023 from. J. W. Head suhiecf Derivation of Topographic Feature Names in the Apollo 15 Landing Region - Case 340 ABSTRACT The topographic features in the region of the Apollo 15 landing site (Figure 1) are named for a number of philosophers, explorers and scientists (astronomers in particular) representing periods throughout recorded history. It is of particular interest that several of the individuals were responsible for specific discoveries, observations, or inventions which considerably advanced the study and under- standing of the moon (for instance, Hadley designed the first large reflecting telescope; Beer published classic maps and explanations of the moon's surface).
    [Show full text]
  • JPL to Map the Moon on India Mission
    I n s i d e May 19, 2006 Volume 36 Number 10 News Briefs ............... 2 Griffin Visits Lab ............ 3 Special Events Calendar ...... 2 Passings, Letters ........... 4 Spitzer Sees Comet Breakup... 2 Retirees, Classifieds ......... 4 Jet Propulsion Laborator y A JPL state-of-the-art imaging spectrometer that will provide the first high-resolution spectral map of the JPL to entire lunar surface successfully completed its critical design review this week. The Moon Mineralogy Mapper, also known as “M3,” is one of two in- materials across the surface at high spatial resolution. This data map the struments that NASA is contributing to India’s first mission to the moon, will provide a much-needed long-term baseline for future exploration scheduled to launch in late 2007 or early 2008. By mapping the mineral activities. composition of the lunar surface, the mission will both provide clues to The mission’s observations will address several important scientific moon the early development of the solar system and guide future astronauts to issues, including early evolution of the solar system; fundamental stores of precious resources. processes acting on planets that shape their character; assessment of on India Chandrayaan-1 is India’s first deep-space mission as well as its first potential impact hazards to Earth; and assessment of space resources. lunar mission. “The entire M3 team feels honored to be able to partici- From its vantage point in orbit around the moon, the spacecraft will mission pate,” said Project Manager Tom Glavich of JPL. measure the sunlight reflected by all of the rocks and soil over which The instrument is well on its way to being delivered to the Chandray- it passes.
    [Show full text]
  • Analysis of Polarimetric Mini-SAR and Mini-RF Datasets for Surface Characterization and Crater Delineation on Moon †
    Proceeding Paper Analysis of Polarimetric Mini-SAR and Mini-RF Datasets for Surface Characterization and Crater Delineation on Moon † Himanshu Kumari and Ashutosh Bhardwaj * Photogrammetry and Remote Sensing Department, Indian Institute of Remote Sensing, Dehradun 248001, India; [email protected] * Correspondence: [email protected]; Tel.: +91-9410319433 † Presented at the 3rd International Electronic Conference on Atmospheric Sciences, 16–30 November 2020; Available online: https://ecas2020.sciforum.net/. Abstract: The hybrid polarimetric architecture of Mini-SAR and Mini-RF onboard Indian Chan- drayaan-1 and LRO missions were the first to acquire shadowed polar images of the Lunar surface. This study aimed to characterize the surface properties of Lunar polar and non-polar regions con- taining Haworth, Nobile, Gioja, an unnamed crater, Arago, and Moltke craters and delineate the crater boundaries using a newly emerged approach. The Terrain Mapping Camera (TMC) data of Chandrayaan-1 was found useful for the detection and extraction of precise boundaries of the cra- ters using the ArcGIS Crater tool. The Stokes child parameters estimated from radar backscatter like the degree of polarization (m), the relative phase (δ), Poincare ellipticity (χ) along with the Circular Polarization Ratio (CPR), and decomposition techniques, were used to study the surface attributes of craters. The Eigenvectors and Eigenvalues used to measure entropy and mean alpha showed distinct types of scattering, thus its comparison with m-δ, m-χ gave a profound conclusion to the lunar surface. The dominance of surface scattering confirmed the roughness of rugged material. The results showed the CPR associated with the presence of water ice as well as a dihedral reflection inside the polar craters.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]
  • Coalescence and Particle Self-Assembly of Inkjet-Printed Colloidal Drops
    Coalescence and Particle Self-assembly of Inkjet-printed Colloidal Drops A Thesis Submitted to the Faculty of Drexel University by Xin Yang in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 ii © Copyright 2014 Xin Yang. All Rights Reserved. iii Acknowledgements I would like to thank my advisor Prof. Ying Sun. During the last 3 years, she supports and guides me throughout the course of my Ph.D. research with her profound knowledge and experience. Her dedication and passion for researches greatly encourages me in pursuing my career goals. I greatly appreciate her contribution to my growth during my Ph.D. training. I would like to thank my parents, my girlfriend, my colleagues (Brandon, Charles, Dani, Gang, Dong-Ook, Han, Min, Nate, and Viral) and friends (Abraham, Mahamudur, Kewei, Patrick, Xiang, and Yontae). I greatly appreciate Prof. Nicholas Cernansky, Prof. Bakhtier Farouk, Prof. Adam Fontecchio, Prof. Frank Ji, Prof. Alan Lau, Prof. Christopher Li, Prof. Mathew McCarthy, and Prof. Hongseok (Moses) Noh for their critical assessments and positive suggestions during my candidacy exam, proposal and my defense. I also appreciate the financial supports of National Science Foundation (Grant CAREER-0968927 and CMMI-1200385). iv TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii
    [Show full text]
  • Proposed Miscellaneous Rule Revisions
    DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY MAINE LAND USE PLANNING COMMISSION PROPOSED MISCELLANEOUS RULE REVISIONS Comment Draft The following revisions propose amendments to Chapter 10, land Use Subdistricts and Standards for areas within the Jurisdiction of the Maine Land Use Planning Commission. This document only includes relevant sections of Chapter 10, indicates additions in underline, deletions as strikethroughs, and relocations as double underline and double strikethroughs. Generally, these revisions include the following data corrections for one or more listings: ‐ Lake identification numbers; ‐ Resource ratings, resource class, land use designations, or management classification; ‐ Alphabetical order; ‐ Columnar data shifts; ‐ Minor civil division and lake name changes; and ‐ Improve legibility by changing font and adding border; and ‐ Add a footnote for lakes with more than one management class ALPHABETICAL LIST OF LAKES SHOWING WILDLANDS LAKE ASSESSMENT FINDINGS IF&W SIZE RESOURCE RATINGS RESOURCE LAND USE MGNT PRINCIPAL LAKE NAME LAKE # TOWN NAME REG (AC) FSH WLD SC SH BOT CLT PHY CLASS ACCESS DEV CLASS ABBIE P 3360 BOWMANTOWN TWP D 12 S 2 AC DEV ABOL DEADWATER 2058 T02 R10 WELS F 150 O S S 1B AC UNDEV ACKLEY P 2200 MOUNT CHASE F 19 S 2 AC UNDEV ALDER L 1778 T11 R04 WELS G 160 3 AC UNDEV ALDER P 0120 T03 R05 BKP WKR D 108 3 INAC UNDEV ALDER P 2504 ALDER BROOK TWP E 37 S S S 2 AC UNDEV ALLAGASH L 9787 T08 R14 WELS E 4260 O O O O S O 1A AC UNDEV 2 ALLAGASH P 2970 T09 R15 WELS G 89 S S 2 AC UNDEV ALLEN P 4516 T35
    [Show full text]
  • 6Th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017
    6th Annual Jackson School of Geosciences Student Research Symposium February 4, 2017 Jackson School of Geosciences GSEC Graduate Student Executive Committee Welcome to the 6th Annual Jackson School Research Symposium It is with great pleasure we welcome you all to the 6th Annual Jackson School Research Symposium at UT-Austin! This symposium would not have been possible without the hard work of student volunteers, the support of faculty/research scientists, and generous support from ConocoPhillips. Thank you for taking part in supporting our students and growing research program within the Jackson School. Enjoy the posters! Schedule of Presentations and Events Breakfast, A.M. session poster set-up...............................................8:30 a.m. Early Career Graduate (ECG) posters......................................9:00-11:30 a.m. Late Career Masters (LCM) posters.........................................9:00-11:30 a.m. Lunch, A.M. session poster take-down.............................................11:30 a.m. P.M. session poster set-up................................................................12:30 p.m. Undergraduate (U) posters….....................................................1:00-3:30 p.m. Late Career PhD (LCPhD) posters.............................................1:00-3:30 p.m. Happy hour/judging............................................................................3:30 p.m. Awards/closing....................................................................................4:00 p.m. ii Table of Contents Program
    [Show full text]
  • GRAIL Reveals Secrets of the Lunar Interior
    GRAIL Reveals Secrets of the Lunar Interior — Dr. Patrick J. McGovern, Lunar and Planetary Institute A mini-flotilla of spacecraft sent to the Moon in the past few years by several nations has revealed much about the characteristics of the lunar surface via techniques such as imaging, spectroscopy, and laser ranging. While the achievements of these missions have been impressive, only GRAIL has seen deeply enough to reveal inner secrets that the Moon holds. LRecent Lunar Missions Country Name Launch Date Status ESA Small Missions for Advanced September 27, 2003 Ended with lunar surface impact on Research in Technology-1 (SMART-1) September 3, 2006 USA Acceleration, Reconnection, February 27, 2007 Extension of the THEMIS mission; ended Turbulence and Electrodynamics of in 2012 the Moon’s Interaction with the Sun (ARTEMIS) Japan SELENE (Kaguya) September 14, 2007 Ended with lunar surface impact on June 10, 2009 PChina Chang’e-1 October 24, 2007 Taken out of orbit on March 1, 2009 India Chandrayaan-1 October 22, 2008 Two-year mission; ended after 315 days due to malfunction and loss of contact USA Lunar Reconnaissance Orbiter (LRO) June 18, 2009 Completed one-year primary mission; now in five-year extended mission USA Lunar Crater Observation and June 18, 2009 Ended with lunar surface impact on Sensing Satellite (LCROSS) October 9, 2009 China Chang’e-2 October 1, 2010 Primary mission lasted for six months; extended mission completed flyby of asteroid 4179 Toutatis in December 2012 USA Gravity Recovery and Interior September 10, 2011 Ended with lunar surface impact on I Laboratory (GRAIL) December 17, 2012 To probe deeper, NASA launched the Gravity Recovery and Interior Laboratory (GRAIL) mission: twin spacecraft (named “Ebb” and “Flow” by elementary school students from Montana) flying in formation over the lunar surface, tracking each other to within a sensitivity of 50 nanometers per second, or one- twenty-thousandth of the velocity that a snail moves [1], according to GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology.
    [Show full text]