Redalyc.Guillaume Amontons

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Guillaume Amontons Revista CENIC. Ciencias Químicas ISSN: 1015-8553 [email protected] Centro Nacional de Investigaciones Científicas Cuba Wisniak, Jaime Guillaume Amontons Revista CENIC. Ciencias Químicas, vol. 36, núm. 3, 2005, pp. 187-195 Centro Nacional de Investigaciones Científicas La Habana, Cuba Disponible en: http://www.redalyc.org/articulo.oa?id=181620584008 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista CENIC Ciencias Químicas, Vol. 36, No. 3, 2005. Guillaume Amontons Jaime Wisniak. Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105. [email protected] Recibido: 24 de agosto de 2004. Aceptado: 28 de octubre de 2004. Palabras clave: barómetro, termometría, cero absoluto, higrómetro, telégrafo, máquina de combustión externa, fricción en las máquinas. Key words: barometer, thermometry, absolute zero, hygrometer, telegraph, external-combustion machine, friction in machines. RESUMEN. Guillaume Amontons (1663-1705) fue un experimentador que se de- Many instruments had been de- dicó a la mejora de instrumentos usados en física, en particular, el barómetro y el veloped to measure in a gross man- termómetro. Dentro de ellos se destacan, en particular, un barómetro plegable, ner the humidity of air. Almost all un barómetro sin cisterna para usos marítimos, y un higrómetro. Experimentó systems made use of the hygro- con el termómetro de aire e hizo notar que con dicho aparato el máximo frío sería scopic properties of vegetable or aquel que reduciría el resorte (presión) del aire a cero, siendo así, el primero que animal fibers such as hemp, oats, dedujo la presencia de un cero absoluto de temperatura. Durante sus estudios leather, or strips of wood. These sobre el comportamiento del aire estableció que a volumen constante la presión materials were held by a weight or varía en forma inversa a la temperatura. Desarrolló una máquina de combustión spring in such a way to displace an externa y fue uno de los primeros en estudiar el roce en las máquinas (leyes de index in front of an arbitrary scale Amontons-Coulomb). as they expanded or contracted [The ABSTRACT. Guillaume Amontons (1663-1705) was an experimentalist who de- modern hair hygrometer was in- voted himself to the improvement of instruments employed in physical experi- vented by Horace Bénédict de .3 ments, particularly the barometer, and the thermometer. Of special note are a Saussure (1740-1799) in 1783] In folded barometer, a cisternless barometer to be used at sea, and a hygrometer of the year 1687, when he was only his invention. He experimented with an air-thermometer and pointed out that twenty-four years old, Amontons the extreme cold of such a thermometer would be that which reduced the spring presented a new hygroscope of his of the air (pressure) to nothing, thus being the first to recognize that the use of air design to the Académie des Sci- as a thermometric substance led to the inference of the existence of a zero of ences, which met with general ap- temperature. During his studies on the behavior of air he established that at probation His apparatus, based on constant volume the pressure varied inversely to the temperature. He devised an the expansion and contraction of a external-combustion machine and was among the first to study problems due to substance as it absorbs and loses friction in machines (Amontons-Coulomb laws). atmospheric moisture, consisted of a ball of beech wood, horn, or leather filled with mercury; it varied in size according to the humidity of the at- SOME DETAILS ABOUT LIFE this as a handicap, he considered it a mosphere. AND CAREER blessing, because it allowed him to Between 1688 and 1695 he devel- There are very few details about concentrate on his scientific work oped one of the first optical tele- the life and career of Guillaume without interruption. After unsuc- graph, which he thought would be Amontons; most of them appear in cessful labor to build up a perpetual of help to deaf people. In his scheme the obituary published by Bernard motion machine, he decided, de- messages were transmitted by le Bouvier de Fontenelle (1657-1757) spite his family disagreement, to means of a bright light that was vis- shortly after Amontonss death.1 study physical sciences, celestial ible to a person with a telescope at Guillaume Amontons was born mechanics, and mathematics, as the next station. Although he dem- in Paris on August 31, 1663, the son well as drawing, surveying, and ar- onstrated it to the King some time of an advocate who had left his na- chitecture. So far as is known he did between 1688 and 1695, it was never tive province of Normandy and es- not attend a university. Afterwards, adopted. As early as 1699 he pro- tablished himself at Paris. When after being employed on various posed a thermal motor, a machine Amontons was in the third form public works projects that gave him using hot air and external combus- (Troisiéme) of the Latin school at a practical knowledge of applied tion with direct rotation. In this Paris he became very sick and con- mechanics, he devoted himself to work he made his first observations tracted such a deafness that obliged the development, improvement, regarding the phenomenon of fric- him to renounce all communications and design of physical instru- tion. The experiments carried on in with mankind. Far from regarding ments.2 connection with this machine led 187 Revista CENIC Ciencias Químicas, Vol. 36, No. 3, 2005. him also to note that ordinary air pressure of 30 inches of mercury is ent coefficients of expansion, he going from the temperature of ice heated to the boiling temperature was able to establish that the theory to that of boiling water increases its of water the pressure increases by that liquids condense and cool volume by about one third. In the about one third, to 40 inches, while first, before expanding with ap- same year Amontons published one air at 60 inches increases to 80 inches, proaching heat was incorrect be- of the first known experimental and so forth. He observed that for cause the observed results were studies on the question of losses an equal elevation of temperature actually due to the expansion of the caused by friction in machines. The the increase of pressure of a gas was containers. Also, using a barometer well-known Amontons laws were in always in the same proportion, no as an altimeter, he tried to verify the reality a rediscovery of similar facts matter what the initial pressure. On exactitude of Mariottes law at low described by Leonardo da Vinci the basis of the latter finding he pressures. (1452-1519) years before. Amontonss proposed an explanation for certain In 1695 he published his only book, work included a clear statement of catastrophes, such as earthquakes: Remarques et experiences physiques the laws of proportionality between If there is air deep within the earth, sur la construction dune nouvette the friction and the mutual pressure it is extremely compressed and clepsydre, sur les barometres, les of the bodies in contact, as well as could reach an irresistible pressure thermometres et les hygrometers14 in an explanation of the causes of fric- as a result of a relatively small in- which he summarized all his work tion. crease in temperature. on the development of instruments. In 1695 Amontons sought to re- Amontons developed the air The book was dedicated to the new the use of the clepsydra (Note 1), thermometer, which relied on the Académie des Sciences. operated by the flow of water as a increase in volume of a gas with Amontons was appointed membre timing apparatus on ships in order temperature rather than the in- premier titulaire of the reformed to solve the problem of determining crease in volume of a liquid. With Académie in 1690, after being rec- longitude at sea. He proposed that its aid he found that Newtons law ommended by the astronomer Jean his clepsydra could be used at sea, of cooling was seriously inaccurate. Le Févre (1652-1706). although it would not have been ac- Using the air thermometer he de- According to Fontanelle1 Amontons curate enough to measure longi- vised a method to measure the lived a very healthy life until the tude. change in temperature in terms of beginning of October 1705 when he Between 1702 and 1703 Amontons a proportional change in pressure. had a sudden acute attack of peri- published some important papers He experimented with an air-ther- tonitis; the following infection led on thermometry, thermometers, mometer, in which the temperature to his death on October 11, 1705, at and on practical ways of graduating was defined by measuring the the age of forty-two. His wife and a ordinary alcohol thermometers. Af- length of a column of mercury, and two-month old daughter survived ter observing that the temperature pointed out that the extreme cold him. of water remained constant once it of such a thermometer would be A two-kilometer diameter moon achieved its boiling point, he pro- that which reduced the spring crater located at the coordinates 5° posed that the latter be used as the (pressure) of the air to nothing, thus 18' S/46° 48' O is named after Amon- fixed thermometric point. He was being the first to recognize that the tons. one of the first to realize the impor- use of air as a thermometric sub- tance of measuring the thermal ex- stance led to the inference of the SCIENTIFIC CONTRIBUTIONS pansion of elastic fluids.
Recommended publications
  • LUNAR INTERACTIONS ABSTRACTS of PAPERS PRESENTED at the CONFERENCE on INTERACTIONS of the INTERPLANETARY PLASMA with the MODERN and ANCIENT MOON
    LUNAR INTERACTIONS ABSTRACTS OF PAPERS PRESENTED AT THE CONFERENCE ON INTERACTIONS OF THE INTERPLANETARY PLASMA with the MODERN AND ANCIENT MOON ORGANIZED BY THE I. N 3 LUNAR SCIENCE INSTITUTE m I 3 AND THE I- 2 SPACE PHYSICS DEPARTMENT RICE UNIVERSITY sponsored by the NATIONAL AERONAUTICS m m AND 0 .. I-( OIW mrl SPACE ADMINISTRATION ZX CV OH IOI H WclU AND THE uux- V&H 0 NATIONAL SCIENCE FOUNDATION g,,,, wm. WWO@W u u ? ZZLOX€e HW5H vlOHU ffiMHrnfC 4 ffi H 2.~4~4a Edited by 3 dz ,.aV)ffiuJO ffiwcstn WPt.4" DAVID R. CRISWELL ,!a !a Pl r 4 W Pa4 %- rn ZW. and Or=4OcC+J fO Hi4 r WWF I rnU2.M ffiBZ* JOHN W. FREEMAN UUW4aJ I amor 0 alffiwffi E REPRODUCTION RESTRICTIONS OVERRIDDEN 2Z~OZ E 2 2 .: u Bmscientific ma Technical Information FaciLitX -eu $4 to) Copyright O 1974 by the Lunar Science Institute Conference held at George Williams College Lake Geneva Campus Williams Bay, Wisconsin 30 September - 4 October 1974 Compiled by and available from The Lunar Science Institute 3303 Nasa Road 1 Houston, Texas 77058 PREFACE The field of lunar science has essentially completed a period of exponential growth promoted by the national efforts of the 1960's to land on the moon. As normally happens in a diverse scientific community, the interpretations of specialized lunar data have reflected the precepts in the various specialized fields. Constant promotion of the broadest overviews between these diverse fields is appropriate to identify processes or phenomenon recog- nized in one avenue of investigation which may have great importance in explaining the data of other specialities.
    [Show full text]
  • A NONSMOOTH APPROACH for the MODELLING of a MECHANICAL ROTARY DRILLING SYSTEM with FRICTION Samir Adly, Daniel Goeleven
    A NONSMOOTH APPROACH FOR THE MODELLING OF A MECHANICAL ROTARY DRILLING SYSTEM WITH FRICTION Samir Adly, Daniel Goeleven To cite this version: Samir Adly, Daniel Goeleven. A NONSMOOTH APPROACH FOR THE MODELLING OF A ME- CHANICAL ROTARY DRILLING SYSTEM WITH FRICTION. Evolution Equations and Control Theory, AIMS, In press, X, 10.3934/xx.xx.xx.xx. hal-02433100 HAL Id: hal-02433100 https://hal.archives-ouvertes.fr/hal-02433100 Submitted on 8 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript submitted to doi:10.3934/xx.xx.xx.xx AIMS’ Journals Volume X, Number 0X, XX 200X pp. X–XX A NONSMOOTH APPROACH FOR THE MODELLING OF A MECHANICAL ROTARY DRILLING SYSTEM WITH FRICTION SAMIR ADLY∗ Laboratoire XLIM, Universite´ de Limoges 87060 Limoges, France. DANIEL GOELEVEN Laboratoire PIMENT, Universite´ de La Reunion´ 97400 Saint-Denis, France Dedicated to 70th birthday of Professor Meir Shillor. ABSTRACT. In this paper, we show how the approach of nonsmooth dynamical systems can be used to develop a suitable method for the modelling of a rotary oil drilling system with friction. We study different kinds of frictions and analyse the mathematical properties of the involved dynamical systems.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Leonardo Da Vinci's Contributions to Tribology
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Published as Wear 360-361 (2016) 51-66 http://dx.doi.org/10.1016/j.wear.2016.04.019 Leonardo da Vinci’s studies of friction Ian M. Hutchings University of Cambridge, Department of Engineering, Institute for Manufacturing, 17 Charles Babbage Road, Cambridge CB3 0FS, UK email: [email protected] Abstract Based on a detailed study of Leonardo da Vinci’s notebooks, this review examines the development of his understanding of the laws of friction and their application. His work on friction originated in studies of the rotational resistance of axles and the mechanics of screw threads. He pursued the topic for more than 20 years, incorporating his empirical knowledge of friction into models for several mechanical systems. Diagrams which have been assumed to represent his experimental apparatus are misleading, but his work was undoubtedly based on experimental measurements and probably largely involved lubricated contacts. Although his work had no influence on the development of the subject over the succeeding centuries, Leonardo da Vinci holds a unique position as a pioneer in tribology. Keywords: sliding friction; rolling friction; history of tribology; Leonardo da Vinci 1. Introduction Although the word ‘tribology’ was first coined almost 450 years after the death of Leonardo da Vinci (1452 – 1519), it is clear that Leonardo was fully familiar with the basic tribological concepts of friction, lubrication and wear. He has been widely credited with the first quantitative investigations of friction, and with the definition of the two fundamental ‘laws’ of friction some two hundred years before they were enunciated (in 1699) by Guillaume Amontons, with whose name they are now usually associated.
    [Show full text]
  • Inis: Terminology Charts
    IAEA-INIS-13A(Rev.0) XA0400071 INIS: TERMINOLOGY CHARTS agree INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUGUST 1970 INISs TERMINOLOGY CHARTS TABLE OF CONTENTS FOREWORD ... ......... *.* 1 PREFACE 2 INTRODUCTION ... .... *a ... oo 3 LIST OF SUBJECT FIELDS REPRESENTED BY THE CHARTS ........ 5 GENERAL DESCRIPTOR INDEX ................ 9*999.9o.ooo .... 7 FOREWORD This document is one in a series of publications known as the INIS Reference Series. It is to be used in conjunction with the indexing manual 1) and the thesaurus 2) for the preparation of INIS input by national and regional centrea. The thesaurus and terminology charts in their first edition (Rev.0) were produced as the result of an agreement between the International Atomic Energy Agency (IAEA) and the European Atomic Energy Community (Euratom). Except for minor changesq the terminology and the interrela- tionships btween rms are those of the December 1969 edition of the Euratom Thesaurus 3) In all matters of subject indexing and ontrol, the IAEA followed the recommendations of Euratom for these charts. Credit and responsibility for the present version of these charts must go to Euratom. Suggestions for improvement from all interested parties. particularly those that are contributing to or utilizing the INIS magnetic-tape services are welcomed. These should be addressed to: The Thesaurus Speoialist/INIS Section Division of Scientific and Tohnioal Information International Atomic Energy Agency P.O. Box 590 A-1011 Vienna, Austria International Atomic Energy Agency Division of Sientific and Technical Information INIS Section June 1970 1) IAEA-INIS-12 (INIS: Manual for Indexing) 2) IAEA-INIS-13 (INIS: Thesaurus) 3) EURATOM Thesaurusq, Euratom Nuclear Documentation System.
    [Show full text]
  • 1 Classical Theory and Atomistics
    1 1 Classical Theory and Atomistics Many research workers have pursued the friction law. Behind the fruitful achievements, we found enormous amounts of efforts by workers in every kind of research field. Friction research has crossed more than 500 years from its beginning to establish the law of friction, and the long story of the scientific historyoffrictionresearchisintroducedhere. 1.1 Law of Friction Coulomb’s friction law1 was established at the end of the eighteenth century [1]. Before that, from the end of the seventeenth century to the middle of the eigh- teenth century, the basis or groundwork for research had already been done by Guillaume Amontons2 [2]. The very first results in the science of friction were found in the notes and experimental sketches of Leonardo da Vinci.3 In his exper- imental notes in 1508 [3], da Vinci evaluated the effects of surface roughness on the friction force for stone and wood, and, for the first time, presented the concept of a coefficient of friction. Coulomb’s friction law is simple and sensible, and we can readily obtain it through modern experimentation. This law is easily verified with current exper- imental techniques, but during the Renaissance era in Italy, it was not easy to carry out experiments with sufficient accuracy to clearly demonstrate the uni- versality of the friction law. For that reason, 300 years of history passed after the beginning of the Italian Renaissance in the fifteenth century before the friction law was established as Coulomb’s law. The progress of industrialization in England between 1750 and 1850, which was later called the Industrial Revolution, brought about a major change in the production activities of human beings in Western society and later on a global scale.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Impact Crater Collapse
    P1: SKH/tah P2: KKK/mbg QC: KKK/arun T1: KKK March 12, 1999 17:54 Annual Reviews AR081-12 Annu. Rev. Earth Planet. Sci. 1999. 27:385–415 Copyright c 1999 by Annual Reviews. All rights reserved IMPACT CRATER COLLAPSE H. J. Melosh Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721; e-mail: [email protected] B. A. Ivanov Institute for Dynamics of the Geospheres, Russian Academy of Sciences, Moscow, Russia 117979 KEY WORDS: crater morphology, dynamical weakening, acoustic fluidization, transient crater, central peaks ABSTRACT The detailed morphology of impact craters is now believed to be mainly caused by the collapse of a geometrically simple, bowl-shaped “transient crater.” The transient crater forms immediately after the impact. In small craters, those less than approximately 15 km diameter on the Moon, the steepest part of the rim collapses into the crater bowl to produce a lens of broken rock in an otherwise unmodified transient crater. Such craters are called “simple” and have a depth- to-diameter ratio near 1:5. Large craters collapse more spectacularly, giving rise to central peaks, wall terraces, and internal rings in still larger craters. These are called “complex” craters. The transition between simple and complex craters depends on 1/g, suggesting that the collapse occurs when a strength threshold is exceeded. The apparent strength, however, is very low: only a few bars, and with little or no internal friction. This behavior requires a mechanism for tem- porary strength degradation in the rocks surrounding the impact site. Several models for this process, including acoustic fluidization and shock weakening, have been considered by recent investigations.
    [Show full text]
  • Rubbing and Scrubbing
    RUBBING AND SCRUBBING he "rubbing and scrub- Tbing department" was Though simply expressed the laws erf T^SSy, much ooff how David Tabor's friction, friction encapsulate a host OI miCrOSCOplC Leonardo's writing on fric- lubrication and wear labora- and nanoscopic phenomena whose tion did not come to light tory was described by certain until the 1960s, which is whv uncharitable colleagues at elucidation has become one of the most the individual more often as- the Cavendish Laboratory in fascinating pursuits in applied physics. sociated with the laws of fric- Cambridge, England, some tion is Guillaume Amontons, 40 years ago. The tables who independently studied have turned. Tribology, as Georg Hahner and Nicholas Spencer both lubricated and unlubri- Tabor named his discipline cated friction at the end of (from the Greek tribos, the 17th century. meaning "rubbing"), has become respectable—even posi- Amontons's observations on friction, as presented to tively modish—in physics departments worldwide. And the Royal Academy of Sciences in Paris on 19 December Tabor, having become the revered elder statesman of this 1699, were as follows flourishing field, is often accorded a place in reference 1 l> That the resistance caused by rubbing increases of even the most hardcore tribo-physics papers.1 or diminishes only in proportion to greater or lesser Although Tabor brought physics to tribology in the pressure (load) and not according to the greater or 1950s, the origins of the field lie in the engineering lesser extent of the surfaces. sciences and stretch back more than 5000 years to the D> That the resistance caused by rubbing is more neolithic period.
    [Show full text]