Chapter Three
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Huron River History Book
THE HURON RIVER Robert Wittersheim Over 15,000 years ago, the Huron River was born as a small stream draining the late Pleistocene landscape. Its original destination was Lake Maumee at present day Ypsilanti where a large delta was formed. As centuries passed, ceding lake levels allowed the Huron to meander over new land eventually settling into its present valley. Its 125 mile journey today begins at Big Lake near Pontiac and ends in Lake Erie. The Huron’s watershed, which includes 367 miles of tributaries, drains over 900 square miles of land. The total drop in elevation from source to mouth is nearly 300 feet. The Huron’s upper third is clear and fast, even supporting a modest trout fishery. The middle third passes through and around many lakes in Livingston and Washtenaw Counties. Eight dams impede much of the Huron’s lower third as it flows through populous areas it helped create. Over 47 miles of this river winds through publicly owned lands, a legacy from visionaries long since passed. White Lake White Lake Mary Johnson The Great Lakes which surround Michigan and the thousands of smaller lakes, hundreds of rivers, streams and ponds were formed as the glacier ice that covered the land nearly 14,000 years ago was melting. The waters filled the depressions in the earth. The glaciers deposited rock, gravel and soil that had been gathered in their movement. This activity sculpted the land creating our landscape. In section 28 of Springfield Township, Oakland County, a body of water names Big Lake by the area pioneers is the source of the Huron River. -
Lesson 4: Sediment Deposition and River Structures
LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Oxbow Lakes White Paper
Mississippi-Alabama Sea Grant Legal Program University of Mississippi School of Law Kinard Hall, Wing E – Room 256 University, MS 38677 (662) 915-7775 [email protected] PUBLIC RIGHTS ON MISSISSIPPI PUBLIC WATERS A White Paper Prepared by Josh Clemons, J.D. Independent Consultant and Former Research Counsel April 2011 This white paper was commissioned by the Mississippi Department of Wildlife, Fisheries, and Parks. The following information is intended as independent research only and does not constitute legal representation of MDWFP or any of its constituents by the Mississippi-Alabama Sea Grant Legal Program. It represents our interpretation of the relevant laws. This product was prepared by the Mississippi-Alabama Sea Grant Legal Program under award number NA06OAR4170078 from the Mississippi-Alabama Sea Grant Consortium and National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce. MASGP 11-008-13 The Mississippi Code declares, in sweeping language, that the policy of the State of Mississippi is to allow its citizens to enjoy the bounty of her woods and waters: Hunting, trapping and fishing are vital parts of the heritage of the State of Mississippi. It shall be the public policy of the State of Mississippi to protect and preserve these activities. The Mississippi Commission on Wildlife, Fisheries and Parks, acting by and through the Mississippi Department of Wildlife, Fisheries and Parks, may regulate hunting, trapping and fishing activities in the State of Mississippi, consistent with its powers and duties under the law. -
Classifying Rivers - Three Stages of River Development
Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion. -
Chevron-Shaped Accumulations Along the Coastlines of Australia As Potential Tsunami Evidences?
CHEVRON-SHAPED ACCUMULATIONS ALONG THE COASTLINES OF AUSTRALIA AS POTENTIAL TSUNAMI EVIDENCES? Dieter Kelletat Anja Scheffers Geographical Department, University of Duisburg-Essen Universitätsstr. 15 D-45141 Essen, Germany e-mail: [email protected] ABSTRACT Along the Australian coastline leaf- or blade-like chevrons appear at many places, sometimes similar to parabolic coastal dunes, but often with unusual shapes including curvatures or angles to the coastline. They also occur at places without sandy beaches as source areas, and may be truncated by younger beach ridges. Their dimensions reach several kilometers inland and altitudes of more than 100 m. Vegetation development proves an older age. Judging by the shapes of the chevrons at some places, at least two generations of these forms can be identified. This paper dis- cusses the distribution patterns of chevrons (in particular for West Australia), their various appearances, and the possible genesis of these deposits, based mostly on the interpretations of aerial photographs. Science of Tsunami Hazards, Volume 21, Number 3, page 174 (2003) 1. INTRODUCTION The systematic monitoring of tsunami during the last decades has shown that they are certainly not low frequency events: on average, about ten events have been detected every year – or more than 1000 during the last century (Fig. 1, NGDC, 2001) – many of which were powerful enough to leave imprints in the geological record. Focusing only on the catastrophic events, we find for the last 400 years (Fig. 2, NGDC, 2001) that 92 instances with run up of more than 10 m have occurred, 39 instances with more than 20 m, and 14 with more than 50 m, or – statistically and without counting the Lituya Bay events – one every 9 years with more than 20 m run up worldwide. -
Lake Restoration Report
Lake Restoration Program 2020 Report and 2021 Plan A cooperative dredging project between DNR and the City of Council Bluffs removed over 500,000 CY of sand from Lake Manawa (Monona County), providing materials for a local levee-building project and improving water quality within the lake. Watershed ponds, constructed at West Lake Park in Scott County, will protect the four lakes in the Lake of the Hills Complex for many years. Mariposa Lake (Jasper County) following restoration, completed in 2020. The project included building two new ponds in the park to protect the lake, dredging, shoreline stabilization, and fish habitat. Submitted To Joint Appropriations Subcommittee on Transportation, Infrastructure, and Capitals and Legislative Services Agency 1 Executive Summary The Fiscal Year 2020 Iowa Lake Restoration Report and Fiscal Year 2021 Plan provides a status of past appropriated legislatively directed funding; outlines the future needs and demands for lake restoration in Iowa; and identifies a prioritized group of lakes and the associated costs for restoration. Iowans value water quality and desire safe healthy lakes that provide a full complement of aesthetic, ecological and recreational benefits. A recently completed water-based recreational use survey by Iowa State University found that six of 10 Iowans visit our lakes multiple times each year and spend $1.2 billion annually in their pursuit of outdoor lake recreation. The most popular activities are fishing, picnicking, wildlife viewing, boating, hiking/biking, swimming and beach use. In addition, visitations at lakes that have completed watershed and lake improvements efforts continue to exceed the state average and their own pre-restoration visitation levels. -
EES - Streams ____1
Name: __________________________ Date: _______ Pd. _______ EES - Streams ____1. Stream A has a steeper slope than ____4. In the two diagrams below, the length of stream B. However, the average water the arrows represents the relative velocities velocity of stream B is greater than that of of stream flow at various places in a stream. stream A. Which is the most reasonable Diagram I shows the different water explanation for this? velocities across the surface. Diagram II (1) Stream B has a higher average shows the different water velocities at temperature. various depths. (2) Stream B has more friction to overcome along its banks. (3) Stream B has a greater volume of water. (4) Stream B has a curved streambed. ____2. The diagram below represents a cross section of sedimentary deposits. Where would this type of deposition most likely occur? At which location in the stream is the water velocity greatest? (1) at the sides along the bottom (2) at the sides near the surface (3) at the center along the bottom (4) at the center near the surface ____5. The map below represents a view of a flowing stream. The letters identify locations (1) in a lake fed by a stream in the stream near the interface between (2) beneath a large glacier land and water. At which two locations is (3) at the rapids in a stream erosion due to flowing water likely to be (4) at the base of a shifting sand dune greatest? ____3. Stream velocity and stream discharge were recorded continuously at the same location in a stream channel. -
USGS Geologic Investigations Series I-2761, Molokai and Lanai
Molokai and Lanai Molokai and Lanai are the least populated and smallest of the main Hawaiian Islands. Both are relatively arid, except for the central mountains of each island and northeast corner of Molokai, so flooding are not as common hazards as on other islands. Lying in the center of the main Hawaiian Islands, Molokai and Lanai are largely sheltered from high annual north and northwest swell and much of south-central Molokai is further sheltered from south swell by Lanai. On the islands of Molokai and Lanai, seismicity is a concern due to their proximity to the Molokai 71 Seismic Zone and the active volcano on the Big Island. Storms and high waves associated with storms pose a threat to the low-lying coastal terraces of south Molokai and northeast Lanai. Molokai and Lanai Index to Technical Hazard Maps 72 Tsunamis tsunami is a series of great waves most commonly caused by violent Amovement of the sea floor. It is characterized by speed (up to 590 mph), long wave length (up to 120 mi), long period between successive crests (varying from 5 min to a few hours,generally 10 to 60 min),and low height in the open ocean. However, on the coast, a tsunami can flood inland 100’s of feet or more and cause much damage and loss of life.Their impact is governed by the magnitude of seafloor displacement related to faulting, landslides, and/or volcanism. Other important factors influenc- ing tsunami behavior are the distance over which they travel, the depth, topography, and morphology of the offshore region, and the aspect, slope, geology, and morphology of the shoreline they inundate. -
Lake Restoration Report
Lake Restoration Program 2019 Report and 2020 Plan Watershed Improvement: Over 200 watershed practices, like the bio-retention cells pictured here were installed around Easter Lake to capture storm water and improve water quality In-Lake Work: Numerous practices were installed including dredging 678,000 cubic yards of excess sediment from the lake After: Easter Lake Grand Re-Opening Celebration June 2019 Submitted To Joint Appropriations Subcommittee on Transportation, Infrastructure, and Capitals and Legislative Services Agency Executive Summary The 2019 Iowa Lake Restoration Report and 2020 Plan outlines the need and demand for lake restoration in Iowa; identifies a prioritized group of lakes and the associated costs for restoration; and provides the status of past appropriated legislatively directed funding. Iowans value water quality and desire safe healthy lakes that provide a full complement of aesthetic, ecological and recreational benefits. A recently completed water-based recreational use survey by Iowa State University found that six of 10 Iowans visit our lakes multiple times each year and spend $1.2 billion annually in their pursuit of outdoor lake recreation. The most popular activities are fishing, picnicking, wildlife viewing, boating, hiking/biking, swimming and beach use. In addition, visitations at lakes that have completed watershed and lake improvements efforts continue to exceed the state average and their own pre-restoration visitation levels. People are also willing to drive farther for lakes with better water quality and more amenities. Legislative Action Goals of Iowa’s Lake Restoration Program include: improved water quality, a diverse, balanced aquatic community, and sustained public use benefits. Many of our Iowa Lakes, similar to our nation’s lakes, are impaired and suffer from excessive algae growth and sedimentation due to nutrient loading and soil loss. -
The Persistence of Oxbow Lakes As Aquatic Habitats: an Assessment of Rates of Change and Patterns of Alluviation
The Persistence of Oxbow Lakes as Aquatic Habitats: an Assessment of Rates of Change and Patterns of Alluviation Pauline L. Dieras 2013 Thesis submitted for the degree of Doctorate of Philosophy Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed Pauline Dieras Date: 05/03/2013 This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD Signed Pauline Dieras Date: 05/03/2013 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed Pauline Dieras Date: 05/03/2013 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed Pauline Dieras Date: 05/03/2013 i Abstract Oxbow lakes are of high ecological importance due to the number and the diversity of habitats they provide. They are created after the abandonment of meanders and subsequent sediment infilling leads to their progressive terrestrialisation, taking from a few months up to several centuries. Nonetheless, little is known about oxbow lake terrestrialisation processes, sediment composition, or why such a disparity exists in lakes’ longevity. To understand the controls on oxbow lakes alluviation, field observations, remotely sensed data and GIS analyses were combined. Sediment transfers in oxbow lakes were documented by topographic and sampling surveys of sites in France and Wales. -
Chart Standardization & Paper Chart Working Group
INTERNATIONAL HYDROGRAPHIC ORGANISATION HYDROGRAPHIQUE ORGANIZATION INTERNATIONALE CHART STANDARDIZATION & PAPER CHART WORKING GROUP (CSPCWG) [A Working Group of the Hydrographic Services and Standards Committee (HSSC)] Chairman: Peter JONES Secretary: Andrew HEATH-COLEMAN UK Hydrographic Office Admiralty Way, Taunton, Somerset TA1 2DN, United Kingdom CSPCWG Letter: 03/2012 Telephone: UKHO ref: HA317/010/031-08 (Chairman) +44 (0) 1823 337900 ext 5035 (Secretary) +44 (0) 1823 337900 ext 3656 Facsimile: +44 (0) 1823 325823 E-mail: [email protected] E-mail: [email protected] [email protected] To CSPCWG Members Date 24 January 2012 Dear Colleagues, Subject: Draft revision of S-4 Section B-300 to B-330 – Round 2 Thank you to the 21 WG members who responded to Letter 03/2011; I apologise for the delay in progressing this. As usual, Andrew and I have consolidated the responses, including all the comments, into Annex A. As you will see, there was a good consensus on most of the questions we asked (even where the answer was „no‟). Some other answers were less clear cut, but usually the associated comments guided us in an outcome which we hope will be acceptable. There were lots of other helpful comments, and I have responded to all these, many of them resulting in some adjustments to the proposed text. We have now prepared a „round 2‟ version of the section, as Annex B (although because of size, we have converted this to PDF and attached as a separate document). As usual, those changes which were not challenged in the first round have now been converted to blue text.