The Persistence of Oxbow Lakes As Aquatic Habitats: an Assessment of Rates of Change and Patterns of Alluviation

Total Page:16

File Type:pdf, Size:1020Kb

The Persistence of Oxbow Lakes As Aquatic Habitats: an Assessment of Rates of Change and Patterns of Alluviation The Persistence of Oxbow Lakes as Aquatic Habitats: an Assessment of Rates of Change and Patterns of Alluviation Pauline L. Dieras 2013 Thesis submitted for the degree of Doctorate of Philosophy Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed Pauline Dieras Date: 05/03/2013 This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD Signed Pauline Dieras Date: 05/03/2013 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed Pauline Dieras Date: 05/03/2013 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed Pauline Dieras Date: 05/03/2013 i Abstract Oxbow lakes are of high ecological importance due to the number and the diversity of habitats they provide. They are created after the abandonment of meanders and subsequent sediment infilling leads to their progressive terrestrialisation, taking from a few months up to several centuries. Nonetheless, little is known about oxbow lake terrestrialisation processes, sediment composition, or why such a disparity exists in lakes’ longevity. To understand the controls on oxbow lakes alluviation, field observations, remotely sensed data and GIS analyses were combined. Sediment transfers in oxbow lakes were documented by topographic and sampling surveys of sites in France and Wales. Aerial photographs and maps were used to date cutoff events, analyse oxbow lakes geometry, and understand the controls on oxbow lake terrestrialisation for eight rivers of different characteristics. Findings from this study illustrate that the specific mechanism by which an oxbow lake is formed is critical to its persistence as a lake and to the sedimentary processes experienced. Chute cutoff oxbow lakes filled in 10 times faster than neck cutoffs and showed significantly different sediment deposits. Results also highlighted that oxbow lakes are not only fine-grained sediment stores, as often referred to, but can be significant bed material sinks since a site on the Ain River sequestered up to 34% of the bed material supply. However, the volume of sediment mobilised in the main channel during cutoff appeared to be larger than the bed-load stored in the former channel within the first decade after abandonment (40%). Sedimentary evidence showed that the terrestrialisation of oxbow lakes is driven by several processes: a flow separation zone at the entrance of the channel creating a sediment plug, sediment sorting by flow gradients and decantation in ponded areas. These results have important implications for the management of meandering rivers by providing a comprehensive analysis of depositional processes which also helps to predict oxbow lake longevity. ii Acknowledgements First and foremost, I would like to thank my supervisors Dr Jose Constantine and Dr T.C Hales for their guidance, knowledge and patience. Their energy and enthusiasm kept me motivated throughout my PhD. I wish to thank my co-supervisor Dr Hervé Piégay for his support and kind help. The work carried out for Chapter 3 could not have been possible without his help. A warm thank you to my father who has always been supporting and encouraging in good or difficult moments. Thank you Tom for your love, humour, support and calm which made me happy for the last few years. Thank you to all my friends from the Earth and Ocean Sciences Department who kept me entertained. A particular thank you to Paola, Margit and Sindia for their distracting lunch breaks, amusing stories and for nicely listening to my complaints. I wish to also thank Hannah and Rhian for their friendship and for kindly sustaining me with regular accommodation at the end of my PhD. Thanks to Kate as well, she kept me sane and fit, even during memorable dance-fitness-crazyness classes which were highly confusing. Thanks to Leigh for driving us every day during our 2 months of fieldwork on the Towy River and for your calm facing various types of farm animals. I also wish to acknowledge the UK Resource Centre for Women in SET and the British Society for Geomorphology who awarded me grants which respectively supported fieldwork in France and allowed me to present my research at an international conference. iii Contents Declaration ................................................................................................................ i Abstract .................................................................................................................... ii Acknowledgements ................................................................................................. iii Contents .................................................................................................................. iv List of Figures ........................................................................................................ viii List of Tables ............................................................................................................. x Chapter 1 .................................................................................................................. 1 Introduction ................................................................................................................... 1 1.1 Sediment transfers .................................................................................................. 2 1.2 Meander cutoff ........................................................................................................ 3 1.2.1 Why do meandering rivers cut-off? .................................................................. 3 1.2.2 The significance of cutoffs for meandering rivers ............................................ 5 1.2.3 Cutoff mechanisms ........................................................................................... 6 1.2.3.1 Neck cutoff ................................................................................................ 6 1.2.3.2 Chute cutoff ............................................................................................... 8 1.3 Stages of oxbow lake sedimentation .................................................................... 11 1.3.1 From cutoff to hydraulic disconnection ......................................................... 11 1.3.2 From disconnection to terrestrialisation ........................................................ 14 1.4 Controls on terrestrialisation ................................................................................ 17 1.4.1 Floods and Hydraulic Connectivity ................................................................. 17 1.4.2 Diversion angle, geometry and cutoff mechanism ......................................... 18 1.4.3 River sediment supply .................................................................................... 20 1.4.4 Vegetation....................................................................................................... 21 1.5 The Role of oxbow lakes on meandering floodplain ............................................. 22 1.5.1 Floodplain architecture ................................................................................... 22 1.5.2 Storage of contaminants and flood waters .................................................... 23 1.5.3 Maintaining diverse aquatic habitats ............................................................. 24 1.5.4 Socio-economic role ....................................................................................... 27 1.6 Conclusion and thesis highlights ........................................................................... 28 Chapter 2 ................................................................................................................ 30 Controls on the persistence of oxbow lakes as aquatic habitats ................................ 30 iv 2.1 Introduction ........................................................................................................... 31 2.2 Study sites .............................................................................................................. 34 2.3 Methodology ......................................................................................................... 38 2.3.1 Aerial photographs measurements ................................................................ 38 2.3.1.1 Water Surface Area (WSA) measurement ............................................... 38 2.3.1.2 Error related to the aerial photograph quality ....................................... 39 2.3.1.3 Influence of the river discharge .............................................................. 40 2.3.1.4 Dating the cutoff events .......................................................................... 41 2.3.1.5 Rate of water surface area reduction ..................................................... 41 2.3.1.6 Diversion angle ........................................................................................ 42 2.3.1.7 Difference in slope between former and active channel ........................ 42 2.3.1.8 Initial meander length ............................................................................. 42 2.3.1.9 Statistical analysis ...................................................................................
Recommended publications
  • The Huron River History Book
    THE HURON RIVER Robert Wittersheim Over 15,000 years ago, the Huron River was born as a small stream draining the late Pleistocene landscape. Its original destination was Lake Maumee at present day Ypsilanti where a large delta was formed. As centuries passed, ceding lake levels allowed the Huron to meander over new land eventually settling into its present valley. Its 125 mile journey today begins at Big Lake near Pontiac and ends in Lake Erie. The Huron’s watershed, which includes 367 miles of tributaries, drains over 900 square miles of land. The total drop in elevation from source to mouth is nearly 300 feet. The Huron’s upper third is clear and fast, even supporting a modest trout fishery. The middle third passes through and around many lakes in Livingston and Washtenaw Counties. Eight dams impede much of the Huron’s lower third as it flows through populous areas it helped create. Over 47 miles of this river winds through publicly owned lands, a legacy from visionaries long since passed. White Lake White Lake Mary Johnson The Great Lakes which surround Michigan and the thousands of smaller lakes, hundreds of rivers, streams and ponds were formed as the glacier ice that covered the land nearly 14,000 years ago was melting. The waters filled the depressions in the earth. The glaciers deposited rock, gravel and soil that had been gathered in their movement. This activity sculpted the land creating our landscape. In section 28 of Springfield Township, Oakland County, a body of water names Big Lake by the area pioneers is the source of the Huron River.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • 2019 Li, Z., Wu, X., and Gao, P.*, Experimental Study on the Process of Neck Cutoff
    Geomorphology 327 (2019) 215–229 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Experimental study on the process of neck cutoff and channel adjustment in a highly sinuous meander under constant discharges Zhiwei Li a,b, Xinyu Wu a,PengGaoc,⁎ a School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China b Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China c Department of Geography, Syracuse University, Syracuse, NY 13244, USA article info abstract Article history: Neck cutoff is an essential process limiting evolution of meandering rivers, in particular, the highly sinuous ones. Received 29 July 2018 Yet this process is extremely difficult to replicate in laboratory flumes. Here we reproduced this process in a Received in revised form 1 November 2018 laboratory flume by reducing at the 1/2500 scale the current planform of the Qigongling Bend (centerline length Accepted 1 November 2018 13 km, channel width 1.2 km, and neck width 0.55 km) in the middle Yangtze River with geometric similarity. In Available online 07 November 2018 five runs with different constant input discharges, hydraulic parameters (water depth, surface velocity, and slope), bank line changes, and riverbed topography were measured by flow meter and point gauges; and bank Keywords: fl Meandering channel line migration and a neck cutoff process were captured by six overhead cameras mounted atop the ume. By Neck cutoff
    [Show full text]
  • Preprint 06-041
    SME Annual Meeting Mar. 27-Mar.29, 2006, St. Louis, MO Preprint 06-041 A MEANDER CUTOFF INTO A GRAVEL EXTRACTION POND, CLACKAMAS RIVER, OREGON P. J. Wampler, Grand Valley State Univ., Allendale, MI E. F. Schnitzer, Dept. of Geology and Mineral Industries, Albany, OR D. Cramer, Portland General Electric, Estacada, OR C. Lidstone, Lidstone and Assoc(s)., Fort Collins, CO Abstract Introduction The River Island mining site is located at approximately river mile The River Island site provides a unique opportunity to examine (RM) 15 on the Clackamas River, a large gravel-bed river in northwest the physical changes to a river channel resulting from avulsion into a Oregon. During major flooding in February 1996, rapid channel gravel extraction pond. Data from before and after the meander cutoff change occurred. The natural process of meander cutoff, slowed for allow evaluation of changes to river geometry, sediment transport, several years by dike construction, was accelerated by erosion into temperature, habitat, and channel form. gravel extraction ponds on the inside of a meander bend during the An avulsion is defined as a lateral migration or cutoff of a river. It flood. involves the diversion of water from the primary channel into a new In a matter of hours, the river cut off a meander and began flowing channel that is either created during the event or reoccupied. through a series of gravel pits located on the inside of the meander Avulsions may be rapid or take many years to complete (Slingerland bend. The cutoff resulted in a reduction in reach length of and Smith, 2004).
    [Show full text]
  • Salmon and Steelhead Limiting Factors in WRIA 1, the Nooksack Basin, 2002
    SALMON AND STEELHEAD HABITAT LIMITING FACTORS IN WRIA 1, THE NOOKSACK BASIN July, 2002 Carol J. Smith, Ph.D. Washington State Conservation Commission 300 Desmond Drive Lacey, Washington 98503 Acknowledgements This report was developed by the WRIA 1 Technical Advisory Group for Habitat Limiting Factors. This project would not have been possible without their vast expertise and willingness to contribute. The following participants in this project are gratefully thanked and include: Bruce Barbour, DOE Alan Chapman, Lummi Indian Nation Treva Coe, Nooksack Indian Tribe Wendy Cole, Whatcom Conservation District Ned Currence, Nooksack Indian Tribe Gregg Dunphy, Lummi Indian Nation Clare Fogelsong, City of Bellingham John Gillies, U.S.D.A. Darrell Gray, NSEA Brady Green, U.S. Forest Service Dale Griggs, Nooksack Indian Tribe Milton Holter, Lummi Indian Nation Doug Huddle, WDFW Tim Hyatt, Nooksack Indian Tribe Mike MacKay, Lummi Indian Nation Mike Maudlin, Lummi Indian Nation Shannon Moore, NSEA Roger Nichols, U.S. Forest Service Andrew Phay, Whatcom Conservation District Dr. Carol Smith, WA Conservation Commission Steve Seymour, WDFW John Thompson, Whatcom County Tyson Waldo, NWIFC SSHIAP Bob Warinner, WDFW Barry Wenger, DOE Brian Williams, WDFW Stan Zyskowski, National Park Service A special thanks to Ron McFarlane (NWIFC) for digitizing and producing maps, to Andrew Phay (Whatcom Conservation District) for supplying numerous figures, to Llyn Doremus (Nooksack Indian Tribe) for the review, and to Victor Johnson (Lummi Indian Nation) for supplying the slope instability figure. I also extend appreciation to Devin Smith (NWIFC) and Kurt Fresh (WDFW) for compiling and developing the habitat rating standards, and to Ed Manary for writing the “Habitat Limiting Factors Background”.
    [Show full text]
  • Oxbow Lakes White Paper
    Mississippi-Alabama Sea Grant Legal Program University of Mississippi School of Law Kinard Hall, Wing E – Room 256 University, MS 38677 (662) 915-7775 [email protected] PUBLIC RIGHTS ON MISSISSIPPI PUBLIC WATERS A White Paper Prepared by Josh Clemons, J.D. Independent Consultant and Former Research Counsel April 2011 This white paper was commissioned by the Mississippi Department of Wildlife, Fisheries, and Parks. The following information is intended as independent research only and does not constitute legal representation of MDWFP or any of its constituents by the Mississippi-Alabama Sea Grant Legal Program. It represents our interpretation of the relevant laws. This product was prepared by the Mississippi-Alabama Sea Grant Legal Program under award number NA06OAR4170078 from the Mississippi-Alabama Sea Grant Consortium and National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce. MASGP 11-008-13 The Mississippi Code declares, in sweeping language, that the policy of the State of Mississippi is to allow its citizens to enjoy the bounty of her woods and waters: Hunting, trapping and fishing are vital parts of the heritage of the State of Mississippi. It shall be the public policy of the State of Mississippi to protect and preserve these activities. The Mississippi Commission on Wildlife, Fisheries and Parks, acting by and through the Mississippi Department of Wildlife, Fisheries and Parks, may regulate hunting, trapping and fishing activities in the State of Mississippi, consistent with its powers and duties under the law.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Flood Control and Sediment Transport Study of The
    FLOOD CONTROL AND SEDIMENT TRANSPORT STUDY OF THE VEDDER RIVER by DAVID GEORGE McLEAN .A.Sc., University of British Columbia, 1975 \ THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES The Department of Civil Engineering We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April, 1980 (5) David George McLean In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Cim / moo^i^y The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 E-6 BP 75-51 1 E ABSTRACT The Chilliwack River flows through the Cascade Mountains until reaching a narrow gorge near Vedder Crossing where it flows onto the Fraser Lowlands and eventually meets the Fraser River. Below Vedder Crossing, the river is actively building an alluvial fan by depos• iting its sediment load of gravel and sand. This deposi• tion has resulted in frequent channel shifts over the fan surface with the most recent migration occurring around 1894 when the river shifted down Vedder Creek. Over the last century the Vedder River has been undergoing very complex changes in response to changes in the incidence of severe floods, changes in sediment supply and interference from river training.
    [Show full text]
  • River Irk – Greater Manchester
    River Irk – Greater Manchester An advisory visit carried out by the Wild Trout Trust – Feb 2015 1 1. Introduction This report is the output of a Wild Trout Trust Advisory Visit (AV) undertaken along approximately 3km of the River Irk in Greater Manchester. The visit was carried out by Dr. Paul Gaskell and hosted by Jo Fraser (Groundwork North West), Mike Duddy (Salford Friendly Anglers) and Dave Barlow (Manchester City Council). The River Irk was walked from an upstream limit at NGR (National Grid Reference) SD 86762 05493 to a downstream limit at SD 83972 03627 Throughout the report, normal convention is followed with respect to bank identification i.e. banks are designated Left Hand Bank (LHB) or Right Hand Bank (RHB) whilst looking downstream. Figure 1: Map overview of the catchment including upstream (yellow triangle) and downstream (red dot) limits of inspected reaches 2. Catchment overview The surveyed sections of watercourse are all captured within a single waterbody (GB112069061130); listed as River Irk – Wince Brook to Moston Brook. A number of the parameters are judged to be of less than “Good Potential” for this heavily modified waterbody (e.g. excerpted data given in Table 1.) – giving an overall current and projected ecological potential of “Moderate”. The stand-out assessment results are those for “Phosphate” and “Invertebrate” parameters that are judged to be of “Poor” and “Bad” potential respectively; resulting in an overall biological quality of “Bad”. The presence of a detergents factory (with associated, documented pollution and fish-kill incidents) is a fundamental issue for this section of the River Irk.
    [Show full text]
  • Lower Irk Valley Neighbourhood Development Framework
    Lower Irk Valley Neighbourhood Development Framework January 2016 Lower Irk Valley Neighbourhood Development Framework 2 Lower Irk Valley Neighbourhood Development Framework 3 Contents Executive Summary 4 1. Introduction 12 2. Framework Vision 14 3. Site Analysis 16 4. Masterplan Strategy 44 5. Character Area Guidance 64 Appendix 1: Strategic Context 120 Appendix 2: Malmo – Best Practise Model 136 Appendix 3: Site Photos 138 Lower Irk Valley Neighbourhood Development Framework 4 Executive Summary Introduction - The Study Area Opportunity There is a pressing need for new homes in the City Centre – the Manchester Core Strategy (2012) identifies that an additional 60,000 new homes will be required over the plan period to This Neighbourhood Development Framework (NDF) has been prepared to guide the future 2027. Equally, there is a need to establish neighbourhoods of choice that will support the future development of the Lower Irk Valley in order to ensure a quality of new development and economic growth of the city. Through adoption of appropriate development and urban design supporting public realm, highways and other community infrastructure that will result in a safe, principles, the Lower Irk Valley has the potential to become a key contributor to Manchester’s accessible, vibrant, unique and sustainable residential-led neighbourhood where people want quality of life offer. This is an offer that can become a key differentiator in relation to both retaining to live. The need for this NDF is derived from the Lower Irk Valley’s proximity to the City Centre’s existing talent as well as attracting the new talent that is required to fuel the city’s next wave of employment, leisure, cultural attractions and transport connections.
    [Show full text]
  • Sediment-Triggered Meander Deformation in the Amazon Basin
    Sediment-triggered meander deformation in the Amazon Basin Joshua Ahmed, José A. Constantine & Thomas Dunne 1 Jose A. Constantine, Thomas Dunne, Carl Legleiter & Eli D. Lazarus Sediment and long-term channel and floodplain evolution across the Amazon Basin 2 Meandering rivers & their importance 3 Controls on meander migration • Curvature • Discharge • Floodplain composition • Vegetation • Sediment? 4 Alluvial sediment • The substrate transported through our river systems • The substrate that builds numerous bedforms, the bedforms that create habitats, the same material that creates the floodplains on which we build and extract our resources. Yet there is supposedly no real connection between this and channel morphodynamics? 5 6 7 Study site: Amazon Basin 8 9 What we did • methods 10 Results 11 Results 12 Results 13 Results 14 Results 15 Proposed mechanisms 16 Summary • Rivers with high sediment supplies migrate more and generate more cutoffs • Greater populations of oxbow lakes (created by cutoffs) mean larger voids in the floodplain • Greater numbers of voids mean more potential sediment accommodation space (to be occupied by fines) • DAMS – connectivity • Rich diversity of habitats 17 36,139 ha Dam, Maderia Finer and Olexy, 2015, New dams on the Maderia River 18 For further information 19 For more information Ahmed et al. In prep i.e., coming soon… to a journal near you 20 References • Constantine, J. A. and T. Dunne (2008). "Meander cutoff and the controls on the production of oxbow lakes." Geology 36(1): 23-26. • Dietrich, W. E., et al. (1979). "Flow and Sediment Transport in a Sand Bedded Meander." The Journal of Geology 87(3): 305-315.
    [Show full text]