An Artifact in a Synthetic Pine Oil

Total Page:16

File Type:pdf, Size:1020Kb

An Artifact in a Synthetic Pine Oil RESEARCH NOTE J. Ess. Oil Res., 3, 41-42 (Jan/Feb 1991) An Artifact in a Synthetic Pine Oil Duane F. Zinkel USDA Forest Service, Forest Products Laboratory* One Gifford Pinchot Drive Madison, WI 53705-2398 ABSTRACT: The isopropyl ether of a-terpineol was identified as an artifact in the synthetic pine oil produced when isopropyl alcohol was used as the emulsifier. KEY WORD INDEX: Synthetic pine oil, a-terpineol isopropyl ether, terpinen-4-ol isopropyl ether, turpentine. INTRODUCTION: The manufacture of synthetic pine oil is the primary use for turpentine. The synthesis involves the acid-catalyzed hydration of a-pinene at the in­ terface ofan emulsion of pinene/mineral acid (1). Various emulsifiers have been used, one of which is isopropyl alcohol. Our gas chromatographic examination of a commercial distilled pine oil, produced using the isopropyl alcohol emulsifier, revealed the presence of 4-5% of a higher boiling component product not present originally in the turpentine. EXPERIMENTAL: NMR spectra were obtained at 310 K with a Bruker WM250 (250 MHz proton and 62.9 MHz carbon) FT spectrometer controlled by an Aspect 2000A minicomputer; DEPT spectra were obtained with a standard Bruker program. Gas chromatography was done with a Hewlett Packard 5880 gas chromatograph (FID) and fused-silica columns: a DB-1 (a methyl silicone) column from J & W Scientific (Folsom, CA), 15m x 0.25mmi.d. witha 0.1-µmfilmoperatedat60°Cand a Carbowaxcolumn,30m x 0.25mm with a 0.25-µm film temperature programmed from 60°C to 225°C at 8°C/min. isopropyl etherwas isolated by liquid chromatography. The commercial pine oil was chromatographed on neutral alumina (III) with pentane as solvent to obtain a fraction enriched to about 20% of thae isopropyl ether. Rechromatography provided l material of99+% purity. H NMR(CDCl3): 5.45 (lH, brd), 3.81 (1H, m), 1.64 (3H C­ 7 Me, br s), 1.099 and 1.1033 (6H isopropyl ether Me, pair d,J = 6.2 Hz), 1.078 and 1.108 * The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and subject to U.S. copyright. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement by the United States Department of Agriculture. 41 42 JOURNAL OF ESSENTIAL OIL RESEARCH (6H C-9 and C-10 Me, 2s) [the data for the methyl protons from 1.0 to 1.2 were obtained with a Bruker AM500 spectrometer because this region was only partially resolved at 250 13 MHz]; (C6D6): 5.38, 3.58, 1.64, 1.073, and 1.062 (6H,prd,J = 6.1 Hz),0.99 (6H,2s). C- NMR(CDCl3): 134.0 (C-1), 121.0 (C-2), 77.0 (C-8), 62.8 (C-2 of isopropyl ether), 43.1 (C-4), 31.2, 27.2, and 24.0 (CH2, C-3,5,6), 25.2, 25.0, 23.7, 23.4, and 22.8 (CH3, C-7,9,10 and C-1,3 of isopropyl ether). RESULTS AND DISCUSSION: The higher-boiling artifact (retention relative to terpineol was 2.474, DB-1) was isolated by chromatography on alumina. The retention of Carbowax (about two-thirds of a-terpineol indicated the artifact did not have an -OH group. From the GC retention characteristics and the components of the simple hydration system, a compound derived from and isopropyl alcohol was expected. How­ ever, initial inspection of the 13C spectrum showed peaks for only 12 carbon atoms. The EI mass spectrum provided little information in that the largest ion was m/z 136 and was similar to the spectrum for but the ammonia-CI spectrum contained a weak M + 1 peak at 197. Reexamination of the 13C spectrum in C6D6 revealed the thirteenth peak, a quaternary carbon that was obscured by the middle peak of the CDCl3 peaks in that solvent. The 13C- and 1H-NMR characteristics suggested that the artifact was, indeed, the expected isopropyl ether of a-terpineol. GC and spectral comparison with synthesized material (reaction of chloride with zinc oxide in isopropyl alcohol (2) and subsequent comparison with authentic material obtained from Gurudutt confirmed the identity. Several preparations of the described isopropyl ether were synthesized from distilled fractions of chloride. One terpinyl chloride fraction contained an impurity that resulted in a contaminant in the crude a-terpinolisopropyl ether. The GC retention of the contaminant on DB1 was 75% of that for the isopropyl ether of A small amount 1 of this contaminant was isolated by chromatography on SiO2. The H-NMR spectrum 0.902 (2 Me d, J = 6.9 Hz), 1.071 and 1.115 (2 Me, pair of d, J = 6.1 Hz), 1.643 (1 Me br s), 3.80 (1H, m), and 5.27 (1H, br d)] is consistent with that expected for the ispropyl ether of terpinen-4-ol. ACKNOWLEDGMENT: The author is grateful to Dr. K. N. Gurudutt of the Central Food Technological Research Institute, Mysore, India, for a generous sample of a-terpinol isopropyl ether, and to Dr. J. Ralph, U. S. Dairy Forage Research Center, Madison, Wisconsin, for the 500 MHz proton spectrum. REFERENCES 1. M. J. Kelly and A. E. Rohl, Pine Oil and Miscellaneous Uses. In: Naval Stores-Pro­ duction, Chemistry, and Utilization. Eds. D. F. Zinkel and J. Russell, pp. 560-572, Pulp Chemicals Association, New York (1989). 2. K. N. Gurudutt, B. Ravindranath and P. Srinivas, Solvolytic Displacement of Alkyl Halides by Metal Salts. Tetrahedron, 38, 1843-1846 (1982). Printed on recycled paper .
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, WHITE CAP 15% PINE OIL
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY /0 -c:JJ - cXJ{X).. EPA Reg. Date of Issuance: U.S . ENVIRONMENTAL PRCTECTION AGENCY Number: .,-«0 $7'.-, Office of ?esticide Programs ~. ~ ~ Antimicrob:a:s Division (7510C] 72138-E 1200 Penns:(:.vania Avenue N.W. OCT 2 1 201a {$1V:Z ~ Washir:g:on, D.C. 20460 <>.,J Term of IS~..lance: NOTICE OF PESTICIDE: Conditional _x_ Registration Reregistration --- Name of Pe~:icide Product: White (under fH'RA, as amended) Cap 15% Pine Oil Cleaner/Disinfectant Name and Address of Registrant (inc! ude lIP Code): White Cap, Inc. 625 Governor Printz Blvd. lC""'i.ngton, PA 19029 .0": Changes. in 1~1~ e~~t . :li1 silbstance from that accepted in connection witlt this registration must be _.-tted t:l'I!ondacd . -,,-~~~~~~_J..strat10n 01vbion prior to use of the label ia c01MIerce. In any correspondeQoe " : _ _ rater -to. the above EPA registration number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered/reregistered under the Federal Insecticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as an endorsement or recommendation of this product by the Agency. In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20060081822A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2006/0081822 A1 Koetzle (43) Pub. Date: Apr. 20, 2006 (54) METHOD TO INCREASE FLASH POINTS OF (52) US. Cl. ............................................................ .. 252/601 FLAMMABLE SOLVENTS (76) Inventor: A. Richard Koetzle, Rochester, NY (57) ABSTRACT (Us) Correspondence AddreSSI The present invention relates to a method to decrease the A- RICHARD KOETZLE ?ammability of normally ?ammable alcohols and solvents. 134 STONECLIFF DRIVE The additive is Alpha Terpineol, Which Will increase the ROCHESTER’ NY 14616 (Us) ?ash point of ?ammable alcohols or solvents, by blending the Terpineol into the ?ammable solvent or alcohol. Solvents (21) Appl' NO" 10/968’441 such as acetone, methanol, ethylacetate, ethanol and Xylene, (22) Filed, Oct 20 2004 to name a feW, increases ?ash points by 50° C. to 60° C., by i ’ addition of 12-14% terpineol. The said solvent can then be Publication Classi?cation blended With other organic solvents to produce performance solvents, such as paint strippers With ?ash points greater (51) Int. Cl. than 1400 F. and meet Federal and state Volatile Organic C 09K 21/00 (2006.01) Compound regulations. US 2006/0081822 A1 Apr. 20, 2006 METHOD TO INCREASE FLASH POINTS OF [0008] The organic solvent or combination of solvents can FLAMMABLE SOLVENTS comprise up to 99 Weight percent of the composition in total, and may be the combination of tWo or more different types BACKGROUND OF THE INVENTION of organic solvents. A typical combination may comprise; [0001] Many industrial processing cleaning compositions [0009] 1.0 to 99 Weight percent organic solvent.
    [Show full text]
  • Pine DC Plus™ Disinfectant Cleaner a One-Step Disinfectant Cleaner That Is Effective in the Reduction of Cross-Contamination
    Pine DC Plus™ Disinfectant Cleaner A one-step disinfectant cleaner that is effective in the reduction of cross-contamination. Units Item # Description Size Per Case BPR460001-A Pine DC Plus™ Gallon 4 Features • Formulated as a one-step cleaner/disinfectant • Kills Trichophyton Mentagrophytes (Athlete’s foot fungus) • Neutral pH does not dull floor finishes when diluted correctly • Hospital grade to meet strict requirements • Quat formula has broad spectrum efficacy • Contains no phosphates to reduce pollution of waterways • Effective against the HIV-1 (AIDS Virus) when used on previously • EPA-registered formula confirms efficacy compliance cleaned surfaces • Pleasant pine oil fragrance • Powerful cleaning, deodorizing and disinfecting performance Order today at Order.StaplesAdvantage.com, EWay.comTM, CoastwideLabs.com, or your online ordering system. Pine DC Plus™ One-Step Germicidal Detergent A one-step disinfectant cleaner that is effective against a broad spectrum of bacteria and viruses and inhibits the growth of mold and mildew. When used as directed, Pine DC Plus will deodorize surfaces in toilet areas, behind and under sinks and counter, garbage cans and garbage storage areas, and other places where bacterial growth can cause malodors. Recommended for use in hospitals, public restrooms, athletic facilities, restaurants and bars, airports, hotels and motels. Contains no phosphorous. Pine DC Plus is a no-rinse neutral pH disinfectant cleaner that disinfects, cleans and deodorizes in one labor-saving step. Provides effective cleaning strength that will not dull most metal-interlock floor finishes, and does not require a rinse prior to recoat. Pine DC Plus is recommended for nonscratch cleaning of showers and tubs, shower doors and curtains, fixtures and toilet bowls.
    [Show full text]
  • Immobilization of P. Digitatum and Bioconversion of Limonene to Alpha-Terpineol. Qiang Tan Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Immobilization of P. Digitatum and Bioconversion of Limonene to Alpha-Terpineol. Qiang Tan Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Tan, Qiang, "Immobilization of P. Digitatum and Bioconversion of Limonene to Alpha-Terpineol." (1996). LSU Historical Dissertations and Theses. 6312. https://digitalcommons.lsu.edu/gradschool_disstheses/6312 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008
    Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 William A. Rutala, Ph.D., M.P.H.1,2, David J. Weber, M.D., M.P.H.1,2, and the Healthcare Infection Control Practices Advisory Committee (HICPAC)3 1Hospital Epidemiology University of North Carolina Health Care System Chapel Hill, NC 27514 2Division of Infectious Diseases University of North Carolina School of Medicine Chapel Hill, NC 27599-7030 1 Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008 3HICPAC Members Robert A. Weinstein, MD (Chair) Cook County Hospital Chicago, IL Jane D. Siegel, MD (Co-Chair) University of Texas Southwestern Medical Center Dallas, TX Michele L. Pearson, MD (Executive Secretary) Centers for Disease Control and Prevention Atlanta, GA Raymond Y.W. Chinn, MD Sharp Memorial Hospital San Diego, CA Alfred DeMaria, Jr, MD Massachusetts Department of Public Health Jamaica Plain, MA James T. Lee, MD, PhD University of Minnesota Minneapolis, MN William A. Rutala, PhD, MPH University of North Carolina Health Care System Chapel Hill, NC William E. Scheckler, MD University of Wisconsin Madison, WI Beth H. Stover, RN Kosair Children’s Hospital Louisville, KY Marjorie A. Underwood, RN, BSN CIC Mt. Diablo Medical Center Concord, CA This guideline discusses use of products by healthcare personnel in healthcare settings such as hospitals, ambulatory care and home care; the recommendations are not intended for consumer use of the products discussed. 2
    [Show full text]
  • Antimicrobial Effects of Pine Essential Oil Against Listeria Monocytogenes Elizabeth Louise Marhefka University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Biological and Agricultural Engineering Biological and Agricultural Engineering Undergraduate Honors Theses 5-2015 Antimicrobial effects of pine essential oil against Listeria monocytogenes Elizabeth Louise Marhefka University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/baeguht Part of the Bioresource and Agricultural Engineering Commons Recommended Citation Marhefka, Elizabeth Louise, "Antimicrobial effects of pine essential oil against Listeria monocytogenes" (2015). Biological and Agricultural Engineering Undergraduate Honors Theses. 36. http://scholarworks.uark.edu/baeguht/36 This Thesis is brought to you for free and open access by the Biological and Agricultural Engineering at ScholarWorks@UARK. It has been accepted for inclusion in Biological and Agricultural Engineering Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Antimicrobial Effects of Pine Essential Oil against Listeria monocytogenes An Undergraduate Honors College Thesis in the Department of Biological Engineering College of Engineering University of Arkansas Fayetteville, AR by Elizabeth L. Marhefka Acknowledgements I would like express my thanks to Dr. Danielle Julie Carrier for her guidance in this project, for allowing me to conduct experiments in her laboratory, and for giving me the opportunity to work with materials and research subjects that her laboratory has spent a great amount of time and effort exploring. I would also like to thank Dr. Elizabeth Martin for guiding me through each step of the experimental process and for teaching me valuable information about scientific research. I would like to thank Mr. Richard Sakul for allowing me to use his research results in pine essential oil quantification with gas chromatography to enhance my project.
    [Show full text]
  • Wöhler Synthesis of Urea
    Wöhler synthesis of urea Wöhler, 1928 – – + + NH Cl + K N C O 4 NH4 N C O O H2N NH2 Friedrich Wöhler Annalen der Physik und Chemie 1828, 88, 253–256 Significance: Wöhler was the first to make an organic substance from an inorganic substance. This was the beginning of the end of the theory of vitalism: the idea that organic and inorganic materials differed essentially by the presence of the “vital force”– present only in organic material. To his mentor Berzelius:“I can make urea without thereby needing to have kidneys, or anyhow, an animal, be it human or dog" Friedrich Wöhler, 1880-1882 Polytechnic School in Berlin Support for vitalism remained until 1845, when Kolbe synthesized acetic acid Polytechnic School at Kassel from carbon disulfide University of Göttingen Fischer synthesis of glucose PhHN N O N O NHPh Br aq. HCl Δ PhNH2NH2 HO H HO H O Br "α−acrose" H OH H OH H OH H OH CH2OH CH2OH α−acrosazone α−acrosone an “osazone” (osazone test for reducing sugars) Zn/AcOH OH OH CO2H CHO O HO H HO H OH Br2 HO H HO H Na-Hg HO H HNO3 HO H H OH H OH H OH H OH then resolve H O+ H OH via strychnine H OH H OH 3 H OH CH2OH salts CH2OH CH OH CH2OH 2 D-Mannonic acid DL-Mannose DL-Mannitol DL-Fructose quinoline • Established stereochemical relationship CO2H CHO H OH H OH between mannose and glucose Na-Hg HO H HO H (part of Fischer proof) H OH + H OH H3O • work mechanisms from acrosazone on H OH H OH Emil Fischer, 1852-1919 CH2OH CH2OH University of Munich (1875-81) D-Gluconic acid D-Glucose University of Erlangen (1881-88) University of Würzburg (1888-92) University of Berlin (1892-1919) Fischer, E.
    [Show full text]
  • Gum Naval Stores: Turpentine and Rosin from Pine Resin
    - z NON-WOOD FORESTFOREST PRODUCTSPRODUCTS ~-> 2 Gum naval stores:stores: turpentine and rosinrosin from pinepine resinresin Food and Agriculture Organization of the Unaed Nations N\O\ON- -WOODWOOD FOREST FOREST PRODUCTSPRODUCTS 22 Gum navalnaval stores:stores: turpentine• and rosinrosin from pinepine resinresin J.J.W.J.J.W. Coppen andand G.A.G.A. HoneHone Mi(Mf' NANATURALTURAL RESRESOURCESOURCES INSTITUTEIN STITUTE FFOODOOD ANDAN D AGRICULTUREAGRIC ULTURE ORGANIZATIONORGANIZATION OFOF THETH E UNITEDUNITED NATIONSNATIONS Rome,Rome, 19951995 The designationsdesignations employedemployed andand thethe presentationpresentation of of materialmaterial inin thisthis publication do not imply the expression of any opinionopinion whatsoever onon thethe partpart ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concernconcerninging thethe legal status of any countrycountry,, territory, city or areaareaorofits or of its auauthorities,thorities, orconcerningor concerning the delimitationdelirnitation of itsits frontiers or boundaries.boundaries. M-37M-37 IISBNSBN 92-5-103684-5 AAllll rights reserved.reserved. No part of this publication may be reproduced, stored in a retrretrievalieval systemsystem,, oror transmitted inin any form or byby anyany means,means, electronic,electronic, mechanimechanicai,cal, photocphotocopyingopying oror otherwise, withoutwithout thethe prior permission ofof the copyright owner. AppApplicationslications forfor such permission,permission, with a statementstatement
    [Show full text]
  • 710 Spirits Solubility Parameter Hildebrand Solubility Parameters
    710 Spirits Solubility Parameter Hildebrand Solubility Parameters Hildebrand solubility parameters are one way to examine the solubility of compounds in different solvents. It is a numerical value that indicates the relative solvency behavior of specific solvents and compounds. This parameter is derived from the heat of vaporization and correlates to how much energy is needed to overcome the intermolecular forces (van der Waals) holding the molecules together. The value for these parameters, δ, was calculated in 1936 by Joel H. Hildebrand and has the unit MPa1/2. The equation is below: The solubility parameters can give an idea of whether or not a compound will be soluble inOnly a solvent or if one solvent is similar to another. If the values of the solute and the solvent have a difference around 5.1 MPa1/2, then the solute should be soluble in the solvent. Solvent and Cannabinoid Solubility Parameters When extracting cannabinoids, a process known as winterization can be used to precipitate out unwanted compounds. The waxes and fats from the plant material will precipitate as the material sits in a solvent in cold temperatures. According to Hildebrand solubility parameters, these compounds precipitate out since their solubility parameters are lower than that of certain solvents. They do not match the difference of 5.1 MPa1/2 so they come out of solution during winterization. The following table lists the solubility parameters of some common solvents, cannabinoids, and terpenes: Compound MPa1/2 Compound MPa1/2 Solvents a-pinene 16.16 n-Heptane 15.40 p-cymene 16.57 Ethanol 26.20 B-myrcene 21.46 710 Spirits 25.66 B-caryophyllene 21.41 Isopropyl Alcohol 23.6 d-Limonene 24.46 Acetone 19.9 Pulegone 25.65 Butane 14.1 1,8-cineole 18.96 Cannabinoids and Terpenes a-pinene 16.15 THC Information22.09 a-terpineol 17.10 CBD 24.34 terpineol-4-ol 18.21 THCA 24.14 p-cymene 24.20 CBDA 25.77 Flavonoids Waxes 16.36 apigenin 20.80 Chlorophyll 16.98 quercetin 25.89 Limonene 16.90 cannflavin A 10.35 ForLinalool 20.46 B-sitosterol 3.86 pg.
    [Show full text]
  • US EPA, Pesticide Product Label, AUSTIN's PINE OIL CLEANER, 08
    °t>" 01^1.9.1 I UNITES MES ENVIRONMENTAL PROTECTION^ ENCY r Stacy S. Harris James Austin Company c/o Adams Technology Systems Al'G ~ 5145 Forest Run Trace - Suite B Alpharetta GA 30022-4504 SUBJECT: Austin's Pine Cleaner EPA Registration Number: 1672-14 Application Dated: May 18, 2011 Receipt Date: June 2, 2011 Dear Ms. Harris: The following amendment, submitted in connection with registration under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended, is acceptable with comments. • To update the label to comply with PR Notice 2007-4. Conditions: • For Disinfection in Non-Medical Use Areas change Salmonella choleraesuis for Salmonella enterica. • Revise the Storage and Disposal section to read: a) Pesticide Storage: "Store this product....". b) Pesticide Disposal: "Pesticide wastes may be hazardous. Improper disposal of excess pesticide, spray mixture or rinsate is a violation of Federal Law. If these wastes cannot be disposed of by use according to label instructions, contact your State Pesticide or Environmental Control Agency, or the Hazardous Waste Representative at the nearest EPA Regional Office for guidance ". c) Container Disposal: Nonrefillable container. Do not reuse or refill this container. Triple rinse as follows: Empty the remaining contents into application equipment or a mix tank and drain for 10 seconds after the flow begins to drip. Fill the container 'A full with water and recap. Shake for 10 seconds. Pour rinsate into application equipment or a mix tank or store rinsate for later use or disposal. Drain for COMCURRBMCHS SYMBOL \ SURNAME ) OATE } Efi*Fam1320-1A(1/90} Printed on Recycled Paper OFFICIAL FILE COPY r 10 seconds after the flow begins to drip.
    [Show full text]
  • Flavonoids and Terpenes • Analytical Standards for Terpenes and Flavonoid Analysis • Single-Element Standards and Mixes Available
    cannstandards® Flavonoids and Terpenes • Analytical standards for terpenes and flavonoid analysis • Single-Element Standards and Mixes Available spexcertiprep.com Connect with us Phone: +1.732.549.7144 • +1.800.LAB.SPEX Spex CertiPrep is an Fax: +1.732.603.9647 Anatylia Scientific company [email protected] Find out more at antylia.com Flavonoids and Terpenes Flavonoids are naturally occurring secondary metabolic products which can have important functions within plants and benefit consumers with health and healing properties. Organic Certified Many beneficial compounds are metabolites produced as an end product Reference Materials of chemical and biological processes. Metabolites are small molecules that have many functions including defense, pigments, pheromones, odorants and catalysts. Primary metabolites are necessary for growth, development and reproduction. Flavonoids are secondary plant, algae or fungus metabolites composed of polyphenolic compounds. Secondary metabolites are not directly involved in critical processes but have secondary functions involving defense and pigmentation. We offer analytical standards for flavonoid analysis. Analytical Standards for Terpenes are the common term for a large group of compounds that contribute Flavonoid and Terpene Testing to flavor and smell of botanical products. Custom standards are also available. Contact us at 732.549.7144 or via email at [email protected] to discuss your specific requirements. Supplied with a Certificate of Analysis to 1702 ed 5 & it 1 d 7 re 0 c 3 c 4 A C er
    [Show full text]