A CITES Manual for Botanic Gardens a CITES Manual for Botanic Gardens 02 a CITES Manual for Botanic Gardens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UV Reflectance but No Evidence for Colour Mimicry in a Putative Brood-Deceptive Orchid Corybas Cheesemanii
Current Zoology 60 (1): 104–113, 2014 UV reflectance but no evidence for colour mimicry in a putative brood-deceptive orchid Corybas cheesemanii M. M. KELLY, A. C. GASKETT* School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Abstract Rewardless orchids attract pollinators by food, sexual, and brood-site mimicry, but other forms of sensory deception may also operate. Helmet orchids (Corybas, Nematoceras and related genera) are often assumed to be brood-site deceivers that mimic the colours and scents of mushrooms to fool female fungus gnats (Mycetophilidae) into attempting oviposition and polli- nating flowers. We sampled spectral reflectances and volatile odours of an endemic terrestrial New Zealand orchid Corybas cheesemanii, and co-occurring wild mushrooms. The orchid is scentless to humans and SPME GC-MS analyses did not detect any odours, but more sensitive methods may be required. The orchids reflected strongly across all visible wavelengths (300700nm) with peaks in the UV (~320nm), yellow-green (500600 nm) and red regions (650700 nm), whereas mushrooms and surrounding leaf litter reflected predominantly red and no UV. Rather than mimicking mushrooms, these orchids may attract pollinators by exploiting insects’ strong sensory bias for UV. Modelling spectral reflectances into a categorical fly vision model and a generic tetrachromat vision model provided very different results, but neither suggest any mimicry of mushrooms. However, these models require further assessment and data on fly spectral sensitivity to red wavelengths is lacking – a problem given the predominance of red, fly-pollinated flowers worldwide [Current Zoology 60 (1): 104113, 2014]. Keywords Diptera, Colour space, Fly pollination, Orchidaceae, Spectral reflectance, Visual modelling Flowers typically attract pollinators by advertising in the Orchidaceae, in which approximately one-third of rewards such as food (Chittka and Thompson, 2001; species do not reward their pollinators (Jersáková et al., Raguso, 2004). -
Actes Du 15E Colloque Sur Les Orchidées De La Société Française D’Orchidophilie
Cah. Soc. Fr. Orch., n° 7 (2010) – Actes 15e colloque de la Société Française d’Orchidophilie, Montpellier Actes du 15e colloque sur les Orchidées de la Société Française d’Orchidophilie du 30 mai au 1er juin 2009 Montpellier, Le Corum Comité d’organisation : Daniel Prat, Francis Dabonneville, Philippe Feldmann, Michel Nicole, Aline Raynal-Roques, Marc-Andre Selosse, Bertrand Schatz Coordinateurs des Actes Daniel Prat & Bertrand Schatz Affiche du Colloque : Conception : Francis Dabonneville Photographies de Francis Dabonneville & Bertrand Schatz Cahiers de la Société Française d’Orchidophilie, N° 7, Actes du 15e Colloque sur les orchidées de la Société Française d’Orchidophilie. ISSN 0750-0386 © SFO, Paris, 2010 Certificat d’inscription à la commission paritaire N° 55828 ISBN 978-2-905734-17-4 Actes du 15e colloque sur les Orchidées de la Société Française d’Orchidophilie, D. Prat et B. Schatz, Coordinateurs, SFO, Paris, 2010, 236 p. Société Française d’Orchidophilie 17 Quai de la Seine, 75019 Paris Cah. Soc. Fr. Orch., n° 7 (2010) – Actes 15e colloque de la Société Française d’Orchidophilie, Montpellier Préface Ce 15e colloque marque le 40e anniversaire de notre société, celle-ci ayant vu le jour en 1969. Notre dernier colloque se tenait il y a 10 ans à Paris en 1999, 10 ans c’est long, 10 ans c’est très loin. Il fallait que la SFO renoue avec cette traditionnelle organisation de colloques, manifestation qui a contribué à lui accorder la place prépondérante qu’elle occupe au sein des orchidophiles français et de la communauté scientifique. C’est chose faite aujourd’hui. Nombreux sont les thèmes qui font l’objet de communications par des intervenants dont les compétences dans le domaine de l’orchidologie ne sont plus à prouver. -
Pollination by Deceit in Paphiopedilum Barbigerum (Orchidaceae): a Staminode Exploits the Innate Colour Preferences of Hoverflies (Syrphidae) J
Plant Biology ISSN 1435-8603 RESEARCH PAPER Pollination by deceit in Paphiopedilum barbigerum (Orchidaceae): a staminode exploits the innate colour preferences of hoverflies (Syrphidae) J. Shi1,2, Y.-B. Luo1, P. Bernhardt3, J.-C. Ran4, Z.-J. Liu5 & Q. Zhou6 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 2 Graduate School of the Chinese Academy of Sciences, Beijing, China 3 Department of Biology, St Louis University, St Louis, MO, USA 4 Management Bureau of Maolan National Nature Reserve, Libo, Guizhou, China 5 The National Orchid Conservation Center, Shenzhen, China 6 Guizhou Forestry Department, Guiyang, China Keywords ABSTRACT Brood site mimic; food deception; fruit set; olfactory cue; visual cue. Paphiopedilum barbigerum T. Tang et F. T. Wang, a slipper orchid native to southwest China and northern Vietnam, produces deceptive flowers that are Correspondence self-compatible but incapable of mechanical self-pollination (autogamy). The Y.-B. Luo, State Key Laboratory of Systematic flowers are visited by females of Allograpta javana and Episyrphus balteatus and Evolutionary Botany, Institute of Botany, (Syrphidae) that disperse the orchid’s massulate pollen onto the receptive Chinese Academy of Sciences, 20 Nanxincun, stigmas. Measurements of insect bodies and floral architecture show that the Xiangshan, Beijing 100093, China. physical dimensions of these two fly species correlate with the relative posi- E-mail: [email protected] tions of the receptive stigma and dehiscent anthers of P. barbigerum. These hoverflies land on the slippery centralised wart located on the shiny yellow Editor staminode and then fall backwards through the labellum entrance. -
Cop16 Inf. 34 (English Only / Únicamente En Inglés / Seulement En Anglais)
CoP16 Inf. 34 (English only / Únicamente en inglés / Seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixteenth meeting of the Conference of the Parties Bangkok (Thailand), 3-14 March 2013 CITES TRADE – A GLOBAL ANALYSIS OF TRADE IN APPENDIX-I LISTED SPECIES 1. The attached document has been submitted by the Secretariat at the request of the UNEP World Conservation Monitoring Centre (UNEP-WCMC)* in relation to item 21 on Capacity building. 2. The research was facilitated through funds made available by the Government of Germany. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. CoP16 Inf. 34 – p. 1 CITES Trade - A global analysis of trade in Appendix I-listed species United Nations Environment Programme World Conservation Monitoring Centre February, 2013 UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL United Kingdom Tel: +44 (0) 1223 277314 Fax: +44 (0) 1223 277136 Email: [email protected] Website: www.unep-wcmc.org The United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of the United Nations Environment Programme (UNEP), the world’s foremost intergovernmental environmental organisation. The Centre has been in operation for over 30 years, combining scientific research with practical policy advice. -
Wildlife Trade 2008 an Analysis of the European Union and Candidate Countries’ Annual Reports to CITES
Wildlife Trade 2008 An analysis of the European Union and candidate countries’ annual reports to CITES Prepared by United Nations Environment Programme - World Conservation Monitoring Centre UNEP World Conservation Monitoring Centre PREPARED FOR 219 Huntingdon Road The European Commission, Brussels, Belgium Cambridge CB3 0DL Directorate General Environment United Kingdom ENV E.2 – Environmental Agreements & Trade Tel: +44 (0) 1223 277314 Under contract number: Fax: +44 (0) 1223 277136 070307/2008/497817/SER/E2 Email: [email protected] Website: www.unep-wcmc.org CITATION ABOUT UNEP-WORLD CONSERVATION UNEP-WCMC (2011). Wildlife Trade 2008: An MONITORING CENTRE analysis of the European Union and candidate countries’ annual reports to CITES. UNEP-WCMC, Cambridge. The UNEP World Conservation Monitoring Centre (UNEP-WCMC), based in Cambridge, UK, is the DISCLAIMER specialist biodiversity information and assessment The contents of this report do not necessarily reflect centre of the United Nations Environment the views or policies of UNEP or contributory Programme (UNEP), run cooperatively with organisations. The designations employed and the WCMC, a UK charity. The Centre's mission is to presentations do not imply the expressions of any evaluate and highlight the many values of opinion whatsoever on the part of UNEP, the biodiversity and put authoritative biodiversity European Commission or contributory knowledge at the centre of decision-making. organisations concerning the legal status of any Through the analysis and synthesis of global country, territory, city or area or its authority, or biodiversity knowledge the Centre provides concerning the delimitation of its frontiers or authoritative, strategic and timely information for boundaries. conventions, organisations and countries to use in the development and implementation of their FRONT COVER PHOTOGRAPHS policies and decisions. -
University of Florida Thesis Or Dissertation Formatting
FLORAL FRAGRANCE, POLLINATION, AND SEED GERMINATION OF TWO NATIVE, EPIPHYTIC ORCHIDS IN SOUTH FLORIDA By HALEIGH AMANDA RAY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Haleigh A. Ray To my family and friends who have been tremendously encouraging ACKNOWLEDGMENTS I am extremely grateful for all of my friends and family members who have given endless amounts of love, support, and encouragement as I have progressed through my Ph.D. completion. Without them, this degree would not have been possible. I would like to thank my committee chair and advisor, Dr. Jennifer L. Gillett-Kaufman, for all of the support and advice she has provided during my time here. Thank you for your patience and motivation throughout my dissertation research, it has helped prepare me for my all of my future work in addition to everything that I have completed here at the University of Florida. Additional thanks to my committee members, Dr. Michael Kane, Dr. Charles Stuhl, Dr. Jaret Daniels, and Dr. Jaime Ellis for their feedback on my research. Dr. Kane was always available to help with my seed germination, from the use of his laboratory to troubleshooting research obstacles. Dr. Stuhl provided tremendous assistance in processing of floral fragrance samples and working with me to fully describe the resulting data. I am also very appreciative to the members of the Gillett-Kaufman laboratory, including Dr. Morgan Byron, Eleanor Phillips, Dr. Lawrence Reeves, Omotola Dosunmu, Dr. -
Bee-Mediated Pollen Transfer in Two Populations of Cypripedium Montanum Douglas Ex Lindley
Journal of Pollination Ecology, 13(20), 2014, pp 188-202 BEE-MEDIATED POLLEN TRANSFER IN TWO POPULATIONS OF CYPRIPEDIUM MONTANUM DOUGLAS EX LINDLEY Peter Bernhardt*1, Retha Edens-Meier2, Eric Westhus3, Nan Vance4 1Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 2Department of Educational Studies, Saint Louis University, St. Louis, MO 63103, USA 3Center for Outcomes Research, Saint Louis University, St. Louis, MO 63103, USA 4P.O. Box 282, Kooskia, ID 83539, USA Abstract—The conversion rate of flowers into fruit in C. montanum at two sites over four seasons was 52-85%, unusually high for a food mimic orchid. Comparative measurements of the trap-like labellum of C. montanum showed it was intermediate in size compared to measurements of six other Cypripedium spp. found in North America and China. While visitors to flowers of C. montanum represented three insect orders, at two sites, over four seasons only small- to medium-sized, solitary bees (5-10 mm in length) carried the pollen massulae. Bee-visitation occurred at both sites and began within 24-48 hours following labellum expansion. Female bees in the genus Lasioglossum (Halictidae) were the most common carriers of massulae. However, species of visiting bees differed between sites and years. At both sites the majority of bees entered and escaped from the labellum in less than 180 seconds and there was no significant difference between the times bees spent in the flowers at both sites. At the site on the Eastside Cascades of Central Oregon, there was no correlation between the length and width of a bee and the time it spent escaping from the basal openings. -
CITES Orchids Appendix I Checklist
CITES Appendix I Orchid Checklist For the genera: Paphiopedilum and Phragmipedium And the species: Aerangis ellisii, Cattleya jongheana, Cattleya lobata, Dendrobium cruentum, Mexipedium xerophyticum, Peristeria elata and Renanthera imschootiana CITES Appendix I Orchid Checklist For the genera: Paphiopedilum and Phragmipedium And the species: Aerangis ellisii, Cattleya jongheana, Cattleya lobata, Dendrobium cruentum, Mexipedium xerophyticum, Peristeria elata and Renanthera imschootiana Second version Published July 2019 First version published December 2018 Compiled by: Rafa¨elGovaerts1, Aude Caromel2, Sonia Dhanda1, Frances Davis2, Alyson Pavitt2, Pablo Sinovas2 & Valentina Vaglica1 Assisted by a selected panel of orchid experts 1 Royal Botanic Gardens, Kew 2 United Nations Environment World Conservation Monitoring Centre (UNEP-WCMC) Produced with the financial support of the CITES Secretariat and the European Commission Citation: Govaerts R., Caromel A., Dhanda S., Davis F., Pavitt A., Sinovas P., & Vaglica V. 2019. CITES Appendix I Orchid Checklist: Second Version. Royal Botanic Gardens, Kew, Surrey, and UNEP-WCMC, Cambridge. The geographical designations employed in this book do not imply the expression of any opinion whatsoever on the part of UN Environment, the CITES Secretariat, the European Commission, contributory organisations or editors, concerning the legal status of any country, territory or area, or concerning the delimitation of its frontiers or boundaries. Acknowledgements The compilers wish to thank colleagues at the Royal Botanic Gardens, Kew (RBG Kew) and United Nations Environment World Conservation Monitoring Centre (UNEP-WCMC). We appreciate the assistance of Heather Lindon and Dr. Helen Hartley for their work on the International Plants Names Index (IPNI), the backbone of the World Checklist of Selected Plant Families. We appreciate the guidance and advice of nomenclature specialist H. -
An Annotated Checklist of the Orchidaceae of Laos
Nordic Journal of Botany 26: 257Á316, 2008 doi: 10.1111/j.1756-1051.2008.00265.x, # 2008 The Authors. Journal compilation # Nordic Journal of Botany 2008 Subject Editor: Henrik Ærenlund Pedersen. Accepted 13 October 2008 An annotated checklist of the Orchidaceae of Laos Andre´ Schuiteman, Pierre Bonnet, Bouakhaykhone Svengsuksa and Daniel Barthe´le´my A. Schuiteman ([email protected]), Nationaal Herbarium Nederland, Univ. Leiden, PO Box 9514, NLÁ2300 RA Leiden, the Netherlands. Á P. Bonnet, CIRAD and UM2, UMR AMAP, FRÁ34000 Montpellier, France. Á B. Svengsuksa, National Univ. of Lao PDR, Faculty of Science, Dept of Biologie, PO Box 7322, Vientiane, Laos PDR. Á D. Barthe´le´my, INRA, UMR AMAP, FRÁ34000 Montpellier, France. A checklist is presented of the orchid flora of Laos, enumerating 485 species in 108 genera. An estimate is given of the expected size of the orchid flora of Laos. Notes on habitat, global and local distribution, endemism, conservation, phenology, as well as a systematic overview complement the checklist. Origin of the checklist Á The karst formations and montane forests in the Lak Xao district, Bolikhamxai province. The checklist presented below grew out of a UNESCO Á Various sites in the Phou Khao Khouay NBCA, project (reference no. 27213102 LAO) and the ORCHIS Vientiane and Bolikhamxai provinces. project (Bhttp://www.orchisasia.org/). The first, entitled Á The Phou Phanang NBCA, Vientiane prefecture. ‘Systematic study of the wild orchids in Lao P.D.R. and Á The Louangphrabang district, Louangphrabang pro- their conservation’, was conducted during the year 2005 by vince. Bouakhaykhone Svengsuksa. Some 700 living orchid speci- Á The Oudomxai district, Oudomxai province. -
Phylogenetics, Genome Size Evolution and Population Ge- Netics of Slipper Orchids in the Subfamily Cypripedioideae (Orchidaceae)
ORBIT - Online Repository of Birkbeck Institutional Theses Enabling Open Access to Birkbecks Research Degree output Phylogenetics, genome size evolution and population ge- netics of slipper orchids in the subfamily cypripedioideae (orchidaceae) http://bbktheses.da.ulcc.ac.uk/88/ Version: Full Version Citation: Chochai, Araya (2014) Phylogenetics, genome size evolution and pop- ulation genetics of slipper orchids in the subfamily cypripedioideae (orchidaceae). PhD thesis, Birkbeck, University of London. c 2014 The Author(s) All material available through ORBIT is protected by intellectual property law, including copyright law. Any use made of the contents should comply with the relevant law. Deposit guide Contact: email Phylogenetics, genome size evolution and population genetics of slipper orchids in the subfamily Cypripedioideae (Orchidaceae) Thesis submitted by Araya Chochai For the degree of Doctor of Philosophy School of Science Birkbeck, University of London and Genetic Section, Jodrell Laboratory Royal Botanic Gardens, Kew November, 2013 Declaration I hereby confirm that this thesis is my own work and the material from other sources used in this work has been appropriately and fully acknowledged. Araya Chochai London, November 2013 2 Abstract Slipper orchids (subfamily Cypripedioideae) comprise five genera; Paphiopedilum, Cypripedium, Phragmipedium, Selenipedium, and Mexipedium. Phylogenetic relationships of the genus Paphiopedilum, were studied using nuclear ribosomal ITS and plastid sequence data. The results confirm that Paphiopedilum is monophyletic and support the division of the genus into three subgenera Parvisepalum, Brachypetalum and Paphiopedilum. Four sections of subgenus Paphiopedilum (Pardalopetalum, Cochlopetalum, Paphiopedilum and Barbata) are recovered with strong support for monophyly, concurring with a recent infrageneric treatment. Section Coryopedilum is also recovered with low bootstrap but high posterior probability values. -
CITES and Slipper Orchids
CITES and Slipper Orchids An introduction to slipper orchids covered by the Convention on International Trade in Endangered Species Written by H. Noel McGough, David L. Roberts, Chris Brodie and Jenny Kowalczyk Royal Botanic Gardens, Kew United Kingdom The Board of Trustees, Royal Botanic Gardens, Kew 2006 © The Board of Trustees of the Royal Botanic Gardens, Kew 2006 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission of the publisher unless in accordance with the provisions of the Copyright Designs and Patents Act 1988. First published in 2006 by Royal Botanic Gardens, Kew Richmond, Surrey, TW9 3AB, UK www.kew.org ISBN 1-84246-128-1 For information or to purchase Kew titles please visit www.kewbooks.com or email [email protected] Cover image: © Royal Botanic Gardens, Kew CONTENTS Introduction ..................................................................................................... i Acknowledgements ........................................................................................ ii How to Use this Presentation Pack ............................................................... iii References and Resources ........................................................................ iv-ix Slide Index ................................................................................................. x-xi Slides and speaker’s notes ....................................................................... -
Hengduanbotech Orchid-List Oct 2017
Illustrated Instruction on Part of our Products (Complete offer is in order form) for USA Oct. 2017 Hengduan Mts. Biotechnology is a German company in China, dedicated to the conservation and cultivation of native Chinese orchids. Our base is in Sichuan, Southwest China, in one of the biodiversity hotspots of the world, the Hengduan Mountains System (synonym Mountains of Southwest China), home to about 400 orchid species and the Giant Panda. Our laboratory and subtropical nursery in Chengdu, Sichuan’s capital, as well as the alpine nursery beds in North Sichuan are the tools for in vitro propagation and subsequent raising of a wide range of Chinese orchids, with our specialty being slipper orchids (Cypripedium & Paphiopedilum, but also Phragmipedium and Mexipedium). We create also orchid hybrids and our modern labora- tory is further engaged in the production of fruit crop plants and medicinal herbs. Because the CITES paperwork for every single export involves 7 different governmental agen- cies with 12 steps, and requires at least 3 months (usually up to 6 months), we only export once or twice a year to a given region. Every year we organize and lead botanical study tours through China. The tours are conducted in cooperation with the Jiuzhaigou International Travel Agency and insured according to Chi- nese law. Main focus is orchids including the general flora, but the fascinating culture of China and its delicious cuisine! From April to May, 2018, we will lead 2 botanical study tours in West and Nothwest Yunan, which is focused on Paphiopedilums, Pleiones, Cypripediums and other terrestrial orchids, but includes the full range of the Southwest Chinese mountain flora.