September, 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identificación De Compuestos Leishmanicidas En El Rizoma De Dorstenia Contrajerva
Centro de Investigación Científica de Yucatán, A.C. Posgrado en Ciencias Biológicas IDENTIFICACIÓN DE COMPUESTOS LEISHMANICIDAS EN EL RIZOMA DE DORSTENIA CONTRAJERVA Tesis que presenta HÉCTOR ARTURO PENICHE PAVÍA En opción al título de MAESTRO EN CIENCIAS (Ciencias Biológicas: Opción Biotecnología) Mérida, Yucatán, México 2016 Este trabajo se llevó a cabo en la Unidad de Biotecnología del Centro de Investigación Científica de Yucatán, y forma parte del proyecto de ciencia básica Conacyt 105346 titulado “Aislamiento y evaluación in vitro de metabolitos de plantas nativas de Yucatán con actividad antiprotozoaria”, en el que se participó bajo la dirección del Dr. Sergio R. Peraza Sánchez. AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por el apoyo financiero a través del proyecto de Ciencia Básica 105346 con título “Aislamiento y evaluación in vitro de metabolitos de plantas nativas de Yucatán con actividad antiprotozoaria” y por la beca mensual otorgada con número 338183. Al Centro de Investigación Científica de Yucatán (CICY), por las facilidades para la realización de este proyecto, en especial a la Unidad de Biotecnología; así como el laboratorio de Inmunobiología del Centro de Investigaciones Regionales (CIR) “Dr. Hideyo Noguchi” de la Universidad Autónoma de Yucatán (UADY). A mis directores de tesis el Dr. Sergio R. Peraza Sánchez y la Dra. Rosario García Miss, por la confianza brindada al permitirme una vez más ser parte de su equipo de trabajo y por sus valiosos aportes de carácter científico para la realización y culminación exitosa de este trabajo. A la técnica Q.F.B. Mirza Mut Martín, por todas sus atenciones, compartirme su tiempo y conocimiento sobre el cultivo celular de leishmania. -
In Vitro Antifungal Activity of Dorstenia Mannii Leaf Extracts (Moraceae)
Vol. 14(46), pp. 3164-3169, 18 November, 2015 DOI: 10.5897/AJB2015.14659 Article Number: 935FB1D56243 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae) Kechia Frederick Agem1,2*, Gerald Ngo Teke2, Ngameni Bathelemy3, Fokunang Charles3, Dzoyem Jean-Paul4 and Kamga Henri Lucien2 1Mycology Laboratory, Department of Microbiology, Parasitology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1. Yaoundé, Cameroon. 2Faculty of Health Sciences, University of Bamenda, P. O. Box 39, Bambili. Bamenda, Cameroon. 3Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Cameroon. 4Department of Biochemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon. Received 22 April, 2015; Accepted 15 October, 2015 The leaves of Dorstenia mannii are used in traditional medicine in Cameroon and other African countries for the treatment of infectious diseases like malaria, skin rashes and stomach disorders. To substantiate this folkloric claim, the crude methanol extract and fractions from the leaves of D. mannii were investigated for their antifungal activity. The crude methanol extract was prepared from powdered dried leaves of the D. mannii. A portion was subjected to flash liquid chromatography on silica gel to afford test fractions. All test samples were screened for major groups of phytochemicals.Test samples and nystatin (reference) were evaluated for antifungal activity on ten yeasts using agar disc diffusion and broth microdilution methods. The qualitative analysis of crude methanol extract and fractions of D. -
NATIVE NAMES and USES of SOME PLANTS of EASTERN GUATEMALA Mid HONDURAS
NATIVE NAMES AND USES OF SOME PLANTS OF EASTERN GUATEMALA MiD HONDURAS. By S. F. BLAKE. INTRODUCTION. In the spring of 1919 an Economic Survey Mission of the United States State Department, headed by the late Maj. Percy H. Ashmead, made a brief examination of the natural products and resources of the region lying between the Chamelec6n Valley in Honduras and the Motagua VaUey in Guatemala. Work was also done by the botanists of the expedition in the vicinity of Izabal on Lak.. Izaba!. Descriptions of the new species collected by the expedition, with a short account of its itinerary, have already been published by the writer,' and a number of the new forms have been illustrated. The present list is based · wholly on the data and specimens collected by the botanists and foresters of this expedition-H. Pittier, S. F. Blake, G. B. Gilbert, L. R. Stadtmiller, and H. N. Whitford-and no attempt has been made to incorporate data from other regions of Central America. Such information will be found chiefly in various papers published by Henry Pittier,' J. N. Rose,' and P. C. Standley.' LIST OF NATIVE NAllES AND USES. Acacia sp. CACHITO. eoaNIZuELO. ISCAN.... L. FAAACEJ..E. Acacla sp. I....&GAR'l"O. SANPlWBANO. FABACE'·. A tree up to 25 meters high and 45 em. to diameter. The wood is lISed for bunding. Acalypha sp. Co8TII I A DE PANTA. EUPHOllBlAc!:a. 'Contr. U. S. Not. Herb. 24: 1-32. pl •. 1-10, ,. 1-4. 1922. • Ensayo oobre las plantas usuatee de Costa Rica. pp. 176, pk. -
Index Seminum 2018-2019
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018-2019 In copertina / Cover “La Terrazza Carolina del Real Orto Botanico” Dedicata alla Regina Maria Carolina Bonaparte da Gioacchino Murat, Re di Napoli dal 1808 al 1815 (Photo S. Gaudino, 2018) 2 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018 - 2019 SPORAE ET SEMINA QUAE HORTUS BOTANICUS NEAPOLITANUS PRO MUTUA COMMUTATIONE OFFERT 3 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO ebgconsortiumindexseminum2018-2019 IPEN member ➢ CarpoSpermaTeca / Index-Seminum E- mail: [email protected] - Tel. +39/81/2533922 Via Foria, 223 - 80139 NAPOLI - ITALY http://www.ortobotanico.unina.it/OBN4/6_index/index.htm 4 Sommario / Contents Prefazione / Foreword 7 Dati geografici e climatici / Geographical and climatic data 9 Note / Notices 11 Mappa dell’Orto Botanico di Napoli / Botanical Garden map 13 Legenda dei codici e delle abbreviazioni / Key to signs and abbreviations 14 Index Seminum / Seed list: Felci / Ferns 15 Gimnosperme / Gymnosperms 18 Angiosperme / Angiosperms 21 Desiderata e condizioni di spedizione / Agreement and desiderata 55 Bibliografia e Ringraziamenti / Bibliography and Acknowledgements 57 5 INDEX SEMINUM UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO Prof. PAOLO CAPUTO Horti Praefectus Dr. MANUELA DE MATTEIS TORTORA Seminum curator STEFANO GAUDINO Seminum collector 6 Prefazione / Foreword L'ORTO BOTANICO dell'Università ha lo scopo di introdurre, curare e conservare specie vegetali da diffondere e proteggere, -
Ficus (Fig Tree) Species of Guatemala Nicholas M
Economic Potential for Amate Trees Ficus (Fig Tree) Species of Guatemala Nicholas M. Hellmuth Introduction Entire monographs have been written on the bark paper of the Maya and Aztec codices (Van Hagen 1944). And there are plenty of scholarly botanical studies of Ficus trees of the family Moraceae. But on the Internet there is usually total confusion in popular web sites about the differences between strangler figs and normal fig trees. It is unclear to which degree the bark paper comes from a strangler fig tree, or also from anotherFicus species which is a normal tree (not dedicated to wrapping its roots around a host tree). But all this needs further research since 90% of the books and about 99% of the articles are on bark paper of Mexico. Indeed bark paper is still made in several parts of Mexico (to sell the tourists interested in Aztec, Maya and other cultures). Since we are in the middle of projects studying flavorings for cacao, Aztec and Maya ingredients for tobacco (more than just tobacco), colorants from local plants to dye native cotton clothing, and also trying to locate all the hundreds of medicinal plants of Guatemala, it would require funding to track down and study every species of Ficus. But since we are interested in all utilitarian plants of Mesoamerica, we wanted at least to prepare an introductory tabulation and a brief bibliography to assist people to understand that • strangler figs strangle other trees; these are very common in Guatemala • But there are many fig trees which are not stranglers • Figs for candy and cookies come from fig trees of other parts of the world • Not all bark paper comes just from amate (Ficus) trees For photographs we show in this first edition only the two fig trees which we have found in the last two months of field trips. -
13C-NMR Data from Coumarins from Moraceae Family
American Journal of Analytical Chemistry, 2015, 6, 851-866 Published Online October 2015 in SciRes. http://www.scirp.org/journal/ajac http://dx.doi.org/10.4236/ajac.2015.611081 13C-NMR Data from Coumarins from Moraceae Family Raphael F. Luz1,2*, Ivo J. C. Vieira1, Raimundo Braz-Filho1, Vinicius F. Moreira1 1Sector of Natural Products Chemistry, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil 2Sector of Chemistry, Instituto Federal Fluminense, Campos dos Goytacazes, Brazil Email: *[email protected] Received 7 September 2015; accepted 16 October 2015; published 19 October 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Species from Moraceae family stand out in popular medicine and phytotherapy, have been for example used as expectorants, bronchodilators, anthelmintics and treatment of skin diseases, such as vitiligo, due to the presence of compounds with proven biological activity, as the coumarins. Coumarins are lactones with 1,2-benzopyrone basic structure, and are widely distributed in the plant kingdom, both in free form, and in glycosylated form. This work reports a literature review, describing the data of 13C NMR from 53 coumarins isolated from the family Moraceae, and data comparison between genera who presented photochemical studies, in order to contribute to the chemotaxonomy of this family. Keywords Moraceae, Coumarin, Furocoumarin, Pyranocoumarin, NMR Spectral Data 1. Introduction The Moraceae family has 6 tribes, 63 genera and about 1500 species found in the tropics, subtropics and, in a smaller proportion, in temperate regions. -
Linnaeus' Philosophia Botanica
linnaeus’ Philosophia Botanica STEPHEN FREER Stephen Freer, born at Little Compton in1920, was a classical scholar at Eton and Trinity College Cambridge. In 1940, he was approached by the Foreign Office and worked at Bletchley Park and in London. Later, Stephen was employed by the Historical Manuscripts Commission, retiring in 1962 due to ill health. He has continued to work since then, first as a volunteer for the MSS department of the Bodleian Library with Dr William Hassall, and then on a part-time basis at the Oxfordshire County Record. In 1988, he was admitted as a lay reader in the Diocese of Oxford. His previous book was a translation of Wharton’s Adenographia, published by OUP in 1996. A fellow of the Linneau Society of London, Stephen lives with his wife Frederica in Gloucestershire. They have a daughter, Isabel. COVER ILLUSTRATION Rosemary Wise, who designed and painted the garland of flowers on the book cover, is the botanical illustrator in the Department of Plant Sciences in the University of Oxford, associate staff at the Royal Botanic Gardens, Kew, and a fellow of the Linneau Society of London. In1932 Carl Linnaeus made an epic journey to Lapland, the vast area across arctic Norway, Sweden, and Finland. In 1988, to mark the bicentenary of the Linneau Society of London, a group from Great Britain and Sweden retraced his route. Rosemary, was the official artist and the flowers featured here are taken from ones painted at that time, plants with which Linnaeus would have been familiar. The garland of flowers surrounds an image of the medallion portrait of Linnaeus by C. -
(Moraceae) with a Focus on Artocarpus
Systematic Botany (2010), 35(4): pp. 766–782 © Copyright 2010 by the American Society of Plant Taxonomists DOI 10.1600/036364410X539853 Phylogeny and Recircumscription of Artocarpeae (Moraceae) with a Focus on Artocarpus Nyree J. C. Zerega, 1 , 2 , 5 M. N. Nur Supardi , 3 and Timothy J. Motley 4 1 Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, U. S. A. 2 Northwestern University, Plant Biology and Conservation, 2205 Tech Drive, Evanston, Illinois 60208, U. S. A. 3 Forest Research Institute of Malaysia, 52109, Kepong, Selangor Darul Ehsan, Malaysia 4 Old Dominion University, Department of Biological Sciences, 110 Mills Godwin Building/45th Street, Norfolk, Virginia 23529-0266, U. S. A. 5 Corresponding author ( [email protected] ) Communicating Editor: Anne Bruneau Abstract— Moraceae is a large (~1,050 species) primarily tropical family with several economically and ecologically important species. While its monophyly has been well supported in recent studies, relationships within the family at the tribal level and below remain unresolved. Delimitation of the tribe Artocarpeae has been particularly difficult. Classifications based on morphology differ from those based on phyloge- netic studies, and all treatments include highly heterogeneous assemblages of genera that seem to represent a cross section of the family. We evaluated chloroplast and nuclear DNA sequence data for 60 Moraceae taxa representing all genera that have been included in past treatments of Artocarpeae and also included species from several other Moraceae tribes and closely related families as outgroups. The data were analyzed using maximum parsimony and maximum likelihood methods and indicate that none of the past treatments of Artocarpeae represent a mono- phyletic lineage. -
MORACEAE Da VALE 1
Reserva Natural Vale, Linhares –Espírito Santo, BRASIL MORACEAE da VALE 1 Anderson F. P. Machado1 & Geovane S. Siqueira2 1 Universidade Estadual Feira de Santana (UEFS), 2 Reserva Natural Vale, Linhares, Espírito Santo. Fotos dos autores, exceto quando indicado. Produzido por: Juliana Philipp, Geovane S. Siqueira & R. Foster. Apoio: Connie Keller, Ellen Hyndman Fund e A. Mellon Foundation. Agradecimentos: GABDS – Gerência de Biodiversidade e Florestas; a D.A. Folli, L.C. Pederneiras, MDM V. Filho e a Robin Foster pelas fotos cedidas. © Anderson F.P.Machado [[email protected]], Geovane S. Siqueira [[email protected]] © ECCo, The Field Museum, Chicago, IL 60605 USA. [http://fieldmuseum.org/IDtools] [[email protected]] Rapid Color Guide # 358 versão 1 08/2012 1 Artocarpus altilis 2 Artocarpus heterophyllus 3 Brosimum guianense 4 Brosimum guianense 5 Brosimum lactescens Foto: R. Foster 6 Brosimum lactescens 7 Brosimum lactescens 8 Brosimum lactescens 9 Clarisia ilicifolia 10 Clarisia ilicifolia Foto: R. Foster 11 Clarisia ilicifolia 12 Clarisia racemosa 13 Clarisia racemosa 14 Dorstenia gracilis 15 Dorstenia gracilis Foto: D.A Foli 16 Ficus arpazusa 17 Ficus arpazusa 18 Ficus bahiensis 19 Ficus bahiensis 20 Ficus castellviana Reserva Natural Vale, Linhares –Espírito Santo, BRASIL MORACEAE da VALE 2 Anderson F. P. Machado1 & Geovane S. Siqueira2 1 Universidade Estadual Feira de Santana (UEFS), 2 Reserva Natural Vale, Linhares, Espírito Santo. Fotos dos autores, exceto quando indicado. Produzido por: Juliana Philipp, Geovane S. Siqueira & R. Foster. Apoio: Connie Keller, Ellen Hyndman Fund e A. Mellon Foundation. Agradecimentos: GABDS – Gerência de Biodiversidade e Florestas; a D.A. Folli, L.C. Pederneiras, MDM V. -
MORACEAE Genera Other Than FICUS (C.C
Flora Malesiana, Series I, Volume 17 / Part 1 (2006) 1–152 MORACEAE GENera OTHer THAN FICUS (C.C. Berg, E.J.H. Corner† & F.M. Jarrett)1 FOREWORD The following treatments of Artocarpus, Hullettia, Parartocarpus, and Prainea are based on the monograph by Jarrett (1959–1960) and on the treatments she made for this Flora in cooperation with Dr. M. Jacobs in the 1970s. These included some new Artocarpus species described in 1975 and the re-instatement of A. peltata. Artocarpus lanceifolius subsp. clementis was reduced to the species, in A. nitidus the subspe- cies borneensis and griffithii were reduced to varieties and the subspecies humilis and lingnanensis included in var. nitidus. The varieties of A. vrieseanus were no longer recognised. More new Malesian species of Parartocarpus were described by Corner (1976), Go (1998), and in Artocarpus by Kochummen (1998). A manuscript with the treatment of the other genera was submitted by Corner in 1972. Numerous changes to the taxonomy, descriptions, and keys have been made to the original manuscripts, for which the present first author is fully responsible. References: Corner, E.J.H., A new species of Parartocarpus Baillon (Moraceae). Gard. Bull. Singa- pore 28 (1976) 183–190. — Go, R., A new species of Parartocarpus (Moraceae) from Sabah. Sandaka- nia 12 (1998) 1–5. — Jarrett, F.M., Studies in Artocarpus and allied genera I–V. J. Arnold Arbor. 50 (1959) 1–37, 113–155, 298–368; 51 (1960) 73–140, 320–340. — Jarrett, F.M., Four new Artocarpus species from Indo-Malesia (Moraceae). Blumea 22 (1975) 409–410. — Kochummen, K.M., New species and varieties of Moraceae from Malaysia. -
An Annotated Checklist of the Coastal Forests of Kenya, East Africa
A peer-reviewed open-access journal PhytoKeys 147: 1–191 (2020) Checklist of coastal forests of Kenya 1 doi: 10.3897/phytokeys.147.49602 CHECKLIST http://phytokeys.pensoft.net Launched to accelerate biodiversity research An annotated checklist of the coastal forests of Kenya, East Africa Veronicah Mutele Ngumbau1,2,3,4, Quentin Luke4, Mwadime Nyange4, Vincent Okelo Wanga1,2,3, Benjamin Muema Watuma1,2,3, Yuvenalis Morara Mbuni1,2,3,4, Jacinta Ndunge Munyao1,2,3, Millicent Akinyi Oulo1,2,3, Elijah Mbandi Mkala1,2,3, Solomon Kipkoech1,2,3, Malombe Itambo4, Guang-Wan Hu1,2, Qing-Feng Wang1,2 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Gar- den, Chinese Academy of Sciences, Wuhan 430074, Hubei, China 2 Sino-Africa Joint Research Center (SA- JOREC), Chinese Academy of Sciences, Wuhan 430074, Hubei, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 East African Herbarium, National Museums of Kenya, P. O. Box 45166 00100, Nairobi, Kenya Corresponding author: Guang-Wan Hu ([email protected]) Academic editor: P. Herendeen | Received 23 December 2019 | Accepted 17 March 2020 | Published 12 May 2020 Citation: Ngumbau VM, Luke Q, Nyange M, Wanga VO, Watuma BM, Mbuni YuM, Munyao JN, Oulo MA, Mkala EM, Kipkoech S, Itambo M, Hu G-W, Wang Q-F (2020) An annotated checklist of the coastal forests of Kenya, East Africa. PhytoKeys 147: 1–191. https://doi.org/10.3897/phytokeys.147.49602 Abstract The inadequacy of information impedes society’s competence to find out the cause or degree of a prob- lem or even to avoid further losses in an ecosystem. -
Comparative and Evolutionary Genomics of Angiosperm Trees Plant Genetics and Genomics: Crops and Models
Plant Genetics and Genomics: Crops and Models 21 Andrew Groover Quentin Cronk Editors Comparative and Evolutionary Genomics of Angiosperm Trees Plant Genetics and Genomics: Crops and Models Volume 21 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 [email protected] Andrew Groover • Quentin Cronk Editors Comparative and Evolutionary Genomics of Angiosperm Trees [email protected] Editors Andrew Groover Quentin Cronk Pacific Southwest Research Station Department of Botany United States Forest Service University of British Columbia Davis, CA Vancouver, BC USA Canada ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49327-5 ISBN 978-3-319-49329-9 (eBook) DOI 10.1007/978-3-319-49329-9 Library of Congress Control Number: 2017955083 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.