Ficus (Fig Tree) Species of Guatemala Nicholas M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Observations on the Nature of Papyrus Bonding
]. Ethnobiol. 11(2):193-202 Winter 1991 SOME OBSERVATIONS ON THE NATURE OF PAPYRUS BONDING PETER E. SCORA Moreno Valley, CA 92360 and RAINER W. SCORA Department of Botany and Plant Sciences University of California Riverside, CA 92521 ABSTRACT.-Papyrus (Cyperus papyrus, Cyperaceae) was a multi-use plant in ancient Egypt. Its main use, however, was for the production of laminated leaves which served as writing material in the Mediterranean world for almost 5000 years. Being a royal monopoly, the manufacturing process was kept secret. PI~us Secundus, who first described this process, is unclear as to the adhesive forces bonding the individual papyrus strips together. Various authors of the past century advanced their own interpretation on bonding. The present authors believe that the natural juices of the papyrus strip are sufficient to bond the individual strips into a sheet, and that any additional paste used was for the sole purpose of pasting the individual dried papyrus sheets into a scroll. RESUMEN.-EI papiro (Cyperus papyrus, Cyperaceae) fue una planta de uso multiple en el antiguo Egipto. Su uso principal era la produccion de hojas lami nadas que sirvieron como material de escritura en el mundo meditarraneo durante casi 5000 anos. Siendo un monopolio real, el proceso de manufactura se mantema en secreto. Plinius Secundus, quien describio este proceso por primera vez, no deja claro que fuerzas adhesivas mantenlan unidas las tiras individuales de papiro. Diversos autores del siglo pasado propusieron sus propias interpretaciones respecto a la adhesion. Consideramos que los jugos naturales de las tiras de papiro son suficientes para adherir las tiras individuales y formar una hoja, y que cual quier pegamento adicional se usa unicamente para unir las hojas secas individuales para formar un rollo. -
Microscopic, Histochemical and Preliminary Phytochemical Characterization of Leaves of Trema Micrantha (L.) Blume
Anales de Biología 43: 93-99, 2021 ARTICLE http://dx.doi.org/10.6018/analesbio.43.09 ISSN/eISSN 1138-3399/1989-2128 Microscopic, histochemical and preliminary phytochemical characterization of leaves of Trema micrantha (L.) Blume Cledson dos Santos Magalhães1, Rafaela Damasceno Sá1, Solma Lúcia Souto Maior de Araújo Baltar2 & Karina Perrelli Randau1 1 Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, 50740-321, Recife, Pernambuco, Brazil. 2 Universidade Federal de Alagoas, 57309-005, Arapiraca, Alagoas, Brazil. Resumen Correspondence Caracterización microscópica, histoquímica y fitoquímica preilmi- K.P. Randau nar de las hojas de Trema micrantha (L.) Blume E-mail: [email protected] Para enriquecer el enriquecer el conocimiento sobre Trema mi- Received: 22 November 2020 crantha (L.) Blume, esta investigación tuvo como objetivo realizar Accepted: 15 April 2021 la caracterización anatómica, histoquímica y fitoquímica de las ho- Published on-line: 30 May 2021 jas de la especie. Se realizaron cortes transversales del pecíolo y limbo, así como cortes paradérmicos del limbo, analizados en mi- croscopía óptica y polarizada. Se utilizaron diferentes reactivos para el análisis histoquímico. Se han descrito estructuras anatómi- cas que proporcionan un diagnóstico detallado de las especies es- tudiadas. La histoquímica mostró la presencia de metabolitos es- enciales (flavonoides, taninos, entre otros) para la especie y me- diante análisis SEM-EDS se confirmó que los cristales están com- puestos por oxalato de calcio. El análisis fitoquímico permitió la identificación de mono y sesquiterpenos, triterpenos y esteroides, entre otros. El estudio proporcionó datos sin precedentes sobre la especie, ampliando la información científica de T. micrantha. Palabras clave: Cannabaceae; Microscopía; Farmacobotánica. -
Leafing Through History
Leafing Through History Leafing Through History Several divisions of the Missouri Botanical Garden shared their expertise and collections for this exhibition: the William L. Brown Center, the Herbarium, the EarthWays Center, Horticulture and the William T. Kemper Center for Home Gardening, Education and Tower Grove House, and the Peter H. Raven Library. Grateful thanks to Nancy and Kenneth Kranzberg for their support of the exhibition and this publication. Special acknowledgments to lenders and collaborators James Lucas, Michael Powell, Megan Singleton, Mimi Phelan of Midland Paper, Packaging + Supplies, Dr. Shirley Graham, Greg Johnson of Johnson Paper, and the Campbell House Museum for their contributions to the exhibition. Many thanks to the artists who have shared their work with the exhibition. Especial thanks to Virginia Harold for the photography and Studiopowell for the design of this publication. This publication was printed by Advertisers Printing, one of only 50 U.S. printing companies to have earned SGP (Sustainability Green Partner) Certification, the industry standard for sustainability performance. Copyright © 2019 Missouri Botanical Garden 2 James Lucas Michael Powell Megan Singleton with Beth Johnson Shuki Kato Robert Lang Cekouat Léon Catherine Liu Isabella Myers Shoko Nakamura Nguyen Quyet Tien Jon Tucker Rob Snyder Curated by Nezka Pfeifer Museum Curator Stephen and Peter Sachs Museum Missouri Botanical Garden Inside Cover: Acapulco Gold rolling papers Hemp paper 1972 Collection of the William L. Brown Center [WLBC00199] Previous Page: Bactrian Camel James Lucas 2017 Courtesy of the artist Evans Gallery Installation view 4 Plants comprise 90% of what we use or make on a daily basis, and yet, we overlook them or take them for granted regularly. -
Phenology of Ficus Variegata in a Seasonal Wet Tropical Forest At
Joumalof Biogeography (I1996) 23, 467-475 Phenologyof Ficusvariegata in a seasonalwet tropicalforest at Cape Tribulation,Australia HUGH SPENCER', GEORGE WEIBLENI 2* AND BRIGITTA FLICK' 'Cape TribulationResearch Station, Private Mail Bag5, Cape Tribulationvia Mossman,Queensland 4873, Australiaand 2 The Harvard UniversityHerbaria, 22 Divinity Avenue,Cambridge, Massachusetts 02138, USA Abstract. We studiedthe phenologyof 198 maturetrees dioecious species, female and male trees initiatedtheir of the dioecious figFicus variegataBlume (Moraceae) in a maximalfig crops at differenttimes and floweringwas to seasonally wet tropical rain forestat Cape Tribulation, some extentsynchronized within sexes. Fig productionin Australia, from March 1988 to February 1993. Leaf the female (seed-producing)trees was typicallyconfined productionwas highlyseasonal and correlatedwith rainfall. to the wet season. Male (wasp-producing)trees were less Treeswere annually deciduous, with a pronouncedleaf drop synchronizedthan femaletrees but reacheda peak level of and a pulse of new growthduring the August-September figproduction in the monthsprior to the onset of female drought. At the population level, figs were produced figproduction. Male treeswere also morelikely to produce continuallythroughout the study but there were pronounced figscontinually. Asynchrony among male figcrops during annual cyclesin figabundance. Figs were least abundant the dry season could maintainthe pollinatorpopulation duringthe early dry period (June-September)and most under adverseconditions -
The Palmyrene Prosopography
THE PALMYRENE PROSOPOGRAPHY by Palmira Piersimoni University College London Thesis submitted for the Higher Degree of Doctor of Philosophy London 1995 C II. TRIBES, CLANS AND FAMILIES (i. t. II. TRIBES, CLANS AND FAMILIES The problem of the social structure at Palmyra has already been met by many authors who have focused their interest mainly to the study of the tribal organisation'. In dealing with this subject, it comes natural to attempt a distinction amongst the so-called tribes or family groups, for they are so well and widely attested. On the other hand, as shall be seen, it is not easy to define exactly what a tribe or a clan meant in terms of structure and size and which are the limits to take into account in trying to distinguish them. At the heart of Palmyrene social organisation we find not only individuals or families but tribes or groups of families, in any case groups linked by a common (true or presumed) ancestry. The Palmyrene language expresses the main gentilic grouping with phd2, for which the Greek corresponding word is ØuAi in the bilingual texts. The most common Palmyrene formula is: dynwpbd biiyx... 'who is from the tribe of', where sometimes the word phd is omitted. Usually, the term bny introduces the name of a tribe that either refers to a common ancestor or represents a guild as the Ben Komarê, lit. 'the Sons of the priest' and the Benê Zimrâ, 'the sons of the cantors' 3 , according to a well-established Semitic tradition of attaching the guilds' names to an ancestor, so that we have the corporations of pastoral nomads, musicians, smiths, etc. -
Isolation and Evaluation of Antioxidant and Antibacterial Activity of Flavonoid from Ficus Variegata Blume
538 Indones. J. Chem., 2019, 19 (2), 538 - 543 NOTE: Isolation and Evaluation of Antioxidant and Antibacterial Activity of Flavonoid from Ficus variegata Blume Rolan Rusli*, Bela Apriliana Ningsih, Agung Rahmadani, Lizma Febrina, Vina Maulidya, and Jaka Fadraersada Pharmacotropics Laboratory, Faculty of Pharmacy, University of Mulawarman, Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia * Corresponding author: Abstract: Ficus variegata Blume is a specific plant of East Kalimantan. Flavonoid compound of F. variegata Blume was isolated by vacuum liquid and column tel: +62-85222221907 chromatography, with previously extracted by maceration method using n-hexane and email: [email protected] methanol, and fractionation using ethyl acetate solvent. The eluent used in isolation were Received: April 12, 2017 n-hexane:ethyl acetate (8:2). Based on the results of elucidation structure using Accepted: January 29, 2018 spectroscopy methods (GC-MS, NMR, and FTIR), 5-hydroxy-2-(4-methoxy-phenyl)-8,8- DOI: 10.22146/ijc.23947 dimethyl-8H-pyrano[2,3-f] chromen-4-one was obtained. This compound has antibacterial and antioxidant activity. Keywords: Ficus variegata Blume; flavonoid; antibacterial activities; antioxidant activity ■ INTRODUCTION much every time it produces fruit. Due that, this plant is a potential plant to be used as medicinal plant. Ficus is a genus that has unique characteristics, and F. variegata Blume is usually used as traditional it grows mainly in tropical rainforest [1-3]. Secondary medicine for treatment of various illnesses, i.e., metabolite of the genus Ficus is rich in polyphenolic dysentery and ulceration. Our research group has been compounds, and flavonoids, therefore, the genus Ficus is reported the bioactivity of a secondary metabolite from usually used as traditional medicine for treatment of leaves, stem bark, and fruit of F. -
Chec List What Survived from the PLANAFLORO Project
Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al. -
Ficus Plants for Hawai'i Landscapes
Ornamentals and Flowers May 2007 OF-34 Ficus Plants for Hawai‘i Landscapes Melvin Wong Department of Tropical Plant and Soil Sciences icus, the fig genus, is part of the family Moraceae. Many ornamental Ficus species exist, and probably FJackfruit, breadfruit, cecropia, and mulberry also the most colorful one is Ficus elastica ‘Schrijveriana’ belong to this family. The objective of this publication (Fig. 8). Other Ficus elastica cultivars are ‘Abidjan’ (Fig. is to list the common fig plants used in landscaping and 9), ‘Decora’ (Fig. 10), ‘Asahi’ (Fig. 11), and ‘Gold’ (Fig. identify some of the species found in botanical gardens 12). Other banyan trees are Ficus lacor (pakur tree), in Hawai‘i. which can be seen at Foster Garden, O‘ahu, Ficus When we think of ficus (banyan) trees, we often think benjamina ‘Comosa’ (comosa benjamina, Fig. 13), of large trees with aerial roots. This is certainly accurate which can be seen on the UH Mänoa campus, Ficus for Ficus benghalensis (Indian banyan), Ficus micro neriifolia ‘Nemoralis’ (Fig. 14), which can be seen at carpa (Chinese banyan), and many others. Ficus the UH Lyon Arboretum, and Ficus rubiginosa (rusty benghalensis (Indian banyan, Fig. 1) are the large ban fig, Fig. 15). yans located in the center of Thomas Square in Hono In tropical rain forests, many birds and other animals lulu; the species is also featured in Disneyland (although feed on the fruits of different Ficus species. In Hawaii the tree there is artificial). Ficus microcarpa (Chinese this can be a negative feature, because large numbers of banyan, Fig. -
In Vitro Antifungal Activity of Dorstenia Mannii Leaf Extracts (Moraceae)
Vol. 14(46), pp. 3164-3169, 18 November, 2015 DOI: 10.5897/AJB2015.14659 Article Number: 935FB1D56243 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae) Kechia Frederick Agem1,2*, Gerald Ngo Teke2, Ngameni Bathelemy3, Fokunang Charles3, Dzoyem Jean-Paul4 and Kamga Henri Lucien2 1Mycology Laboratory, Department of Microbiology, Parasitology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1. Yaoundé, Cameroon. 2Faculty of Health Sciences, University of Bamenda, P. O. Box 39, Bambili. Bamenda, Cameroon. 3Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Cameroon. 4Department of Biochemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon. Received 22 April, 2015; Accepted 15 October, 2015 The leaves of Dorstenia mannii are used in traditional medicine in Cameroon and other African countries for the treatment of infectious diseases like malaria, skin rashes and stomach disorders. To substantiate this folkloric claim, the crude methanol extract and fractions from the leaves of D. mannii were investigated for their antifungal activity. The crude methanol extract was prepared from powdered dried leaves of the D. mannii. A portion was subjected to flash liquid chromatography on silica gel to afford test fractions. All test samples were screened for major groups of phytochemicals.Test samples and nystatin (reference) were evaluated for antifungal activity on ten yeasts using agar disc diffusion and broth microdilution methods. The qualitative analysis of crude methanol extract and fractions of D. -
35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods
35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods. & Dressl. each segment, usually only the uppermost persisting, linear, 5-25 cm long, 1.5-4.5 mm broad, obscurely emar- Psygmorchis pusilla (L.) Dods. & Dressl., Phytologia ginate at apex. Inflorescences single flowers or more com- 24:288. 1972 monly few-flowered fascicles or abbreviated, few-flowered Oncidium pusillum (L.) Reichb.f. racemes, borne at apex of stems; flowers white, 3.5-4.5 Dwarf epiphyte, to 8 cm tall; pseudobulbs lacking. Leaves mm long; sepals 3-4.5 mm long, 1-2 mm wide; petals as ± dense, spreading like a fan, equitant, ± linear, 2-6 cm long as sepals, 0.5-1 mm wide; lip 3.5-5 mm long, 2-3.5 long, to 1 cm wide. Inflorescences 1-6 from base of mm wide, entire or obscurely trilobate; column narrowly leaves, about equaling leaves, consisting of long scapes, winged. Fruits oblong-elliptic, ca 1 cm long (including the apices with several acute, strongly compressed, im- the long narrowly tapered base), ca 2 mm wide. Croat bricating sheaths; flowers produced in succession from 8079. axils of sheaths; flowers 2-2.5 cm long; sepals free, Common in the forest, usually high in trees. Flowers spreading, bright yellow, keeled and apiculate, the dorsal in the early dry season (December to March), especially sepal ca 5 mm long, nearly as wide, the lateral sepals in January and February. The fruits mature in the middle 4-5 mm long, 1-1.5 mm wide, hidden by lateral lobes to late dry season. of lip; petals to 8 mm long and 4 mm wide, bright yellow Confused with S. -
Copyright 2013 Katherine Ryan Amato
Copyright 2013 Katherine Ryan Amato BLACK HOWLER MONKEY (ALOUATTA PIGRA) NUTRITION: INTEGRATING THE STUDY OF BEHAVIOR, FEEDING ECOLOGY, AND THE GUT MICROBIAL COMMUNITY BY KATHERINE RYAN AMATO DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology, Evolution, and Conservation Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Doctoral Committee: Professor Paul A. Garber, Chair, Director of Research Associate Professor Angela D. Kent Professor Steven R. Leigh Associate Professor Ripan Malhi ABSTRACT All animals, including primates, face the challenge of obtaining sufficient energy and nutrients despite 1) variation in food availability across habitats and seasons and 2) temporal fluctuations in nutritional requirements due to life history processes. Because variation in food availability or nutritional requirements requires animals to vary energy and nutrient intake, vary energy and nutrient expenditure, or vary digestion and assimilation of energy and nutrients to meet demands, many studies of primates examine shifts in primate activity budgets and foraging patterns across seasons and life history stages. However, few studies establish a direct relationship between activity and diet composition and energy and nutrient intake. Additionally, the mechanisms that primates use to digest and assimilate their food are largely overlooked. Mutualistic gut microbial communities impact host digestive efficiency and assimilation by breaking down otherwise indigestible material and providing hosts with energy and nutrients. Laboratory studies have demonstrated that gut microbial communities shift in response to changes in host diet and physiology, and while these shifts may allow hosts to digest food items more efficiently to meet energy and nutrient demands, no data are currently available to explore this relationship in wild primates. -
NATIVE NAMES and USES of SOME PLANTS of EASTERN GUATEMALA Mid HONDURAS
NATIVE NAMES AND USES OF SOME PLANTS OF EASTERN GUATEMALA MiD HONDURAS. By S. F. BLAKE. INTRODUCTION. In the spring of 1919 an Economic Survey Mission of the United States State Department, headed by the late Maj. Percy H. Ashmead, made a brief examination of the natural products and resources of the region lying between the Chamelec6n Valley in Honduras and the Motagua VaUey in Guatemala. Work was also done by the botanists of the expedition in the vicinity of Izabal on Lak.. Izaba!. Descriptions of the new species collected by the expedition, with a short account of its itinerary, have already been published by the writer,' and a number of the new forms have been illustrated. The present list is based · wholly on the data and specimens collected by the botanists and foresters of this expedition-H. Pittier, S. F. Blake, G. B. Gilbert, L. R. Stadtmiller, and H. N. Whitford-and no attempt has been made to incorporate data from other regions of Central America. Such information will be found chiefly in various papers published by Henry Pittier,' J. N. Rose,' and P. C. Standley.' LIST OF NATIVE NAllES AND USES. Acacia sp. CACHITO. eoaNIZuELO. ISCAN.... L. FAAACEJ..E. Acacla sp. I....&GAR'l"O. SANPlWBANO. FABACE'·. A tree up to 25 meters high and 45 em. to diameter. The wood is lISed for bunding. Acalypha sp. Co8TII I A DE PANTA. EUPHOllBlAc!:a. 'Contr. U. S. Not. Herb. 24: 1-32. pl •. 1-10, ,. 1-4. 1922. • Ensayo oobre las plantas usuatee de Costa Rica. pp. 176, pk.