35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods

Total Page:16

File Type:pdf, Size:1020Kb

35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods 35. ORCHIDACEAE/SCAPHYGLOTTIS 301 PSYGMORCHIS Dods. & Dressl. each segment, usually only the uppermost persisting, linear, 5-25 cm long, 1.5-4.5 mm broad, obscurely emar- Psygmorchis pusilla (L.) Dods. & Dressl., Phytologia ginate at apex. Inflorescences single flowers or more com- 24:288. 1972 monly few-flowered fascicles or abbreviated, few-flowered Oncidium pusillum (L.) Reichb.f. racemes, borne at apex of stems; flowers white, 3.5-4.5 Dwarf epiphyte, to 8 cm tall; pseudobulbs lacking. Leaves mm long; sepals 3-4.5 mm long, 1-2 mm wide; petals as ± dense, spreading like a fan, equitant, ± linear, 2-6 cm long as sepals, 0.5-1 mm wide; lip 3.5-5 mm long, 2-3.5 long, to 1 cm wide. Inflorescences 1-6 from base of mm wide, entire or obscurely trilobate; column narrowly leaves, about equaling leaves, consisting of long scapes, winged. Fruits oblong-elliptic, ca 1 cm long (including the apices with several acute, strongly compressed, im- the long narrowly tapered base), ca 2 mm wide. Croat bricating sheaths; flowers produced in succession from 8079. axils of sheaths; flowers 2-2.5 cm long; sepals free, Common in the forest, usually high in trees. Flowers spreading, bright yellow, keeled and apiculate, the dorsal in the early dry season (December to March), especially sepal ca 5 mm long, nearly as wide, the lateral sepals in January and February. The fruits mature in the middle 4-5 mm long, 1-1.5 mm wide, hidden by lateral lobes to late dry season. of lip; petals to 8 mm long and 4 mm wide, bright yellow Confused with S. longicaulis, which is usually a much streaked with reddish-brown, the margins undulate; lip smaller plant bearing mostly solitary flowers. trilobate, to 2 cm long and broad, bright yellow, the Guatemala to Venezuela, Brazil, Peru, and Ecuador. In lateral lobes ± orbicular, the middle lobe deeply emar- Panama, no doubt widespread; known from tropical ginate, the base with an elaborate subquadrate process; moist forest in the Canal Zone and adjacent Panama, column ca 3 mm long, with prominent, denticulate, lateral from premontane wet forest in Chiriqui, and from trop- wings. Fruits ellipsoid, ca 1.5 cm long, with slender ical wet forest in Veraguas (Bahia Honda). ridges. Croat 4157. Rare on BCI, more common elsewhere in Panama. Scaphyglottis longicaulis S. Wats., Proc. Amer. Acad. Flowers during most of the year, but principally in the Arts 23:286. 1888 dry season. Known to flower more than once per season 5. unguiculata Schlechter since plants often bear both flowers and fruits on separate Epiphyte, to 30 cm tall; stems densely clustered, usually inflorescences. short, slender, less than 4 mm diam, consisting of a few Often found in large colonies (especially on Citrus, swollen, superimposed segments, occasionally somewhat 66. Rutaceae, trees) covering many of the branches. maroon, the old leafless stems persisting; stem sheaths Mexico to Venezuela and south to Brazil and Bolivia; (or their scars) restricted to base. Leaves usually 2 near Trinidad. In Panama, known from tropical moist forest apex of each segment, usually only the uppermost persist- on both slopes of the Canal Zone and in Bocas del Toro, ing, linear, 4-16 cm long, 2-7 mm wide, obscurely emar- Panama, and Darien. ginate at apex. Flowers white, 5-7 mm long, usually solitary at apex of the short upper stem segment; sepals 5-7 mm long, 1-2 mm wide, the laterals united at base; SCAPHYGLOTTIS Poepp. & Endl. petals 5-7 mm long, ca 1 mm wide; lip prominently trilobate, 5-7 mm long, 3-4 mm wide, acute, usually Scaphyglottis graminifolia (R. & P.) Poepp. & Endl., tinged with maroon; column winged laterally, tinged with Now. Gen. Sp. PI. 1:59. 1836 purple especially on pollinia. Fruits narrowly ellipsoid, S. behrii (Reichb.f.) Benth. & Hook, ex Hemsl. ca 7 mm long. Croat 10098. Caespitose epiphyte, to 45 cm tall; stems densely clus- Common in the forest, usually high in trees. Appar- tered and slender, consisting of several superimposed, ently flowers irregularly throughout the year, possibly weakly swollen, finely ridged segments (the lower seg- with two flowering seasons; flowering has been observed ments most slender), occasionally branched, the old in March, April June, September, November, and De- leafless stems persisting. Leaves usually 2, near apex of cember. KEY TO THE SPECIES OF SCAPHYGLOTTIS Leaves linear-lanceolate, relatively short and broad (usually no more than 8 times longer than broad), mostly less than 6 cm long 5. prolifera Cogn. Leaves linear, many times longer than broad, most more than 6 cm long (if less only 1-2 mm wide): Lip trilobate, the lobes of ± equal length; flowers usually 1 per stem (at least only 1 open); stems usually less than 10 cm long, bearing only 1 or 2 sheaths, the sheaths usually near the base, often loose and spreading 5. longicaulis S. Wats. Lip entire or obscurely trilobate (if lobed, the lateral lobes shorter than the middle lobe); flowers usually several in fascicles or racemes; stems often more than 10 cm long, bearing numer- ous, closely fitting sheaths (or with numerous sheath scars) 5. graminifolia (R. & P.) Poepp. & Endl. Fig. 173. Scaphyglottis longicaulis Fig. 174. Sobralia suaveolens 35. ORCHIDACEAE/SOBRALIA 303 Most easily confused with 5. graminifolia. See the occurs there. Seasonal behavior uncertain. Costa Rican genus key for distinctions. plants are known to flower in March. Guatemala to Colombia. In Panama, known from Pollinated by Euglossa dodsoni bees (Dressier, 1968a). tropical moist forest in the Canal Zone, Colon, San Bias, Costa Rica and Panama. In Panama, known from trop- Panama, and Darien. ical moist forest on BCI and reported from Colon and See Fig. 173. the Atlantic slope of central Panama. Scaphyglottis prolifera Cogn. in Mart., Fl. Brasil. SOBRALIA R. & P. 3(5):15. 1898 5. cuneata Schlechter Sobralia fragrans Lindl., Gard. Chron. 598. 1853 Small caespitose epiphyte, 7-25 cm tall; stems slender Small epiphyte (rarely terrestrial), 15-25(45) cm tall; with slender, fusiform segments superimposed along pseudobulbs lacking; stems reedlike but flattened, usually their length. Leaves usually 2 at apex of each segment, all with only 1 leaf (to 3). Leaves narrowly elliptic to oblong- but the lowermost persisting, linear-lanceolate, 1-6 cm elliptic, narrowly acute to acuminate at apex, (6)9-12(23) long, 1-7 mm wide, emarginate at apex. Flowers white, cm long, 1.5-3.5 cm wide, plicate, articulated at base ± sessile, solitary or few in fascicles at apex of stem seg- with a conduplicate, persistent, sheathing base. Flowers ments; sepals 3.5-5 mm long, 1-2.5 mm wide; petals as solitary at apex of stem; sepals ± equal, linear to oblong- long as lateral sepals, 0.5-0.6 mm wide; lip entire or lanceolate, acute or apiculate apically, 3-4 cm long, 4-7 trilobate, 4-6 mm long, 2.5-4 mm wide. Fruits not seen. mm wide, white to cream or pale lavender (at least ex- Shattuck 549. ternally), connate at base; petals ± equaling sepals, white Uncommon, high in trees. Flowering season undeter- or cream with a yellow throat; lip oval to obovate, 3-3.5 mined. Seen flowering in both the late rainy season (Oc- cm long, 1.5-2 cm wide, white with raised yellow ridges, tober) and the dry season (December and February). the central ridge terminating in ragged, hairlike projec- Guatemala to Brazil and Bolivia; West Indies. In tions, the base of the lip with several thickened veins and Panama, known from tropical moist forest in the Canal 2 callus thickenings; column 16-18 mm long. Fruits Zone and Panama, from premontane wet forest in Code slender, to ca 6 cm long and 5 mm wide, closely ribbed. (El Valle), from tropical wet forest in Panama (Cerro Reported by Dressier; one specimen was seen from the Campana), and from premontane rain forest in Code island and transferred to the epiphyte house, but no Cerro Pilon) and Panama (Cerro Jefe). collection was made. The species flowers throughout the rainy season (June to November), especially in July and SIEVEKINGIA Reichb.f. August. Fruiting plants are common in the dry season. Guatemala to Colombia (Choco) and Venezuela. In Sievekingia suavis Reichb.f., Beitr. Syst. Pfl. 3. 1871 Panama, known from tropical moist forest in the Canal Dwarf epiphyte; pseudobulbs ovate, 1.5-3 cm long, with Zone, Panama, and Darien, from premontane wet forest 2 or 3 papery bracts at base. Leaves solitary at apex of in Chiriqui and Veraguas, and from premontane rain forest in Panama (Cerro Jefe). pseudobulb, elliptic-lanceolate, 8-25 cm long, 1.5-3 cm wide, plicate. Racemes short, few-flowered, pendent, from base of pseudobulb; sepals subequal, 10-17 mm Sobralia panamensis Schlechter, Feddes Repert. Beih. long, 4-8 mm wide, pale yellow; petals orange, 10-15 17:11. 1922 mm long, 3-6 mm wide; lip concave, orange, with pur- Epiphyte, to 1.5 m tall; stems reedlike, terete, simple or plish spots, 8-11 mm long, nearly as wide; column 6-8 branching, lepidote or furfuraceous. Leaves spaced along mm long, green with broad orange wings. Fruits not seen. stem, elliptic to broadly elliptic-lanceolate, acuminate, Not seen on BCI, but Dressier has collected the pol- obtuse at base, 5-22 cm long, 2-7.5 cm wide, plicate; leaf linia from bees on the island and is certain that the species sheaths pubescent, closely clasping stem. Flowers solitary KEY TO THE SPECIES OF SOBRALIA Plants usually less than 50 cm tall; most leaves less than 4.5 cm wide; sepals less than 4 cm long: Flowers borne from bract at apex of stem, the distance to the next lower leaf at least 7 cm; stems markedly flattened, often with a single leaf; sepals 3-4 cm long S.
Recommended publications
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • A Prespective Study of Clitoria Ternatia and Its Pharmacological Importance
    High Technology Letters ISSN NO : 1006-6748 A PRESPECTIVE STUDY OF CLITORIA TERNATIA AND ITS PHARMACOLOGICAL IMPORTANCE S. GEJALAKSHMI *1, N. HARIKRISHNAN FACULTY OF PHARMACY, DR.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE, VELAPPANCHAVADI, CHENNAI-77 Abstract: Medicinal herbs and aromatic plants have been extensively used for the past few decades due to its potency and minimal side effects. By observing the medicinal importance of the climbing herb Clitoria ternatea (CT)of Fabeacea family and commonly known as Butterfly pea and Shankpushpi has been taken up due to its high medicinal value due to its wide range of use over decade as memory enhancer,antidepressant,anticonvulsant,transquilizers and sedative agent.A series of secondary metabolite including triterpenoids,flavone glycosides,anthocyanins and i steroids has been isolated from CT extracts.CT plant has wide range of pharmacological activity such as antimicrobial,antipyretic,diuretic,local anaesthetic.CT has been used for several diseases due to availability of several active constituents like alkaloids,flavanoids,saponins,tannins,carbohydrates .This review is an platform to explore the phytochemical investigation and pharmacological importance of CT,which have been practiced in traditional system of medicine and its future potential prespectives in view of innumerable therapeutic importance on this well-known twinning climber. Key words: Shankpushpi,phytochemical,antibacterial,anti- fungal, anti-cancer Introduction: Herbal drugs has an impact for curing disorders. The medicinal herbs are rich in various phytochemical constituents which has been found for traditional system of medicines. In the present reveiw focused on the traditional importance of clitoria ternatea. (CT).It is perennial twinning herb. It is a member of fabiaecea family and it has various synonym like blue pea.
    [Show full text]
  • Number of Plant Species That Correspond with Data Obtained from at Least Two Other Participants
    Promotor: Prof. Dr. ir. Patrick Van Damme Faculty of Bioscience Engineering Department of Plant Production Laboratory of Tropical and Sub-Tropical Agriculture and Ethnobotany Coupure links 653 B-9000 Gent, Belgium ([email protected]) Co-Promotor: Dr. Ina Vandebroek Institute of Economic Botany The New York Botanical Garden Bronx River Parkway at Fordham Road Bronx, New York 10458, USA ([email protected]) Chairman of the Jury: Prof. Dr. ir. Norbert De Kimpe Faculty of Bioscience Engineering Department of Organic Chemistry Coupure links 653 B-9000 Gent, Belgium ([email protected]) Members of the Jury: Prof. Dr. ir. Christian Vogl Prof. Dr. Paul Goetghebeur University of Natural Resources and Faculty of Science Applied Life Sciences Department of Biology Institut für Ökologischen Landbau K.L. Ledeganckstraat 35 Gregor Mendelstrasse 33 B-9000 Gent, Belgium A-1180, Vienna, Austria ([email protected]) ([email protected]) Prof. Dr. Mieke Verbeken Prof. Dr. ir. François Malaisse Faculty of Science Faculté Universitaire des Sciences Department of Biology Agronomiques K.L. Ledeganckstraat 35 Laboratoire d’Ecologie B-9000 Gent, Belgium Passage des Déportés, 2 ([email protected]) B-5030 Gembloux, Belgium ([email protected]) Prof. Dr. ir. Dirk Reheul Faculty of Bioscience Engineering Department of Plant Production Coupure links 653 B-9000 Gent, Belgium ([email protected]) Dean: Prof. Dr. ir. Herman Van Langenhove Rector: Prof. Dr. Paul Van Cauwenberge THOMAS EVERT QUANTITATIVE ETHNOBOTANICAL RESEARCH
    [Show full text]
  • The Potential for Harvesting Fruits in Tropical Rainforests: New Data from Amazonian Peru
    Biodiversity and Conversation 2, 18-38 The potential for harvesting fruits in tropical rainforests: new data from Amazonian Peru OLIVER PHILLIPS* Department Of' Biology, Washington University, Campus Box 1137, 1 Brookings Drive, St Louis, MO 63130- 4899, USA Received 28 January 1992; accepted 18 February 1992 New data shows that edible fruit and nut production in Amazonian forests is substantially lower than most conservationists assume. Direct measures of production in Amazonian Peru show that two terra firrna forest types produced significantly less edible fruit than an alluvial soil forest. Swamp forest produced more edible fruit than any other forest type measured. Palms produce 60% of edible fruit productivity, averaged over three forest types, but the most preferred palm fruits are difficult to harvest because they are borne too high for easy access by collectors. Forest fruit collection in Amazonia is less productive in the short-term than all other food-producing activities except for hunting and cattle ranching. Technological, social and political changes are essential so that sustainable but intrinsically low-yielding extractive activities like fruit collecting become more attractive to Amazonians. Keywords: harvesting; rainforest; fruit and nut; Amazonian Peru Introduction In the last five years, there has been growing interest in the promise of sustained-yield collection of non-timber forest products (NTFPs) from tropical forests as an alternative to deforestation. The broad range of NTFPs harvested by forest-dwelling people includes medicinals, fruits, and industrial materials such as rubber and rattan. Potentially, the combined value of such prodcuts, available year-after-year on a sustainable basis, may make NTFP collection an attractive alternative to destructive uses of tropical forests (e.g.
    [Show full text]
  • Effects of Forest Fragmentation on Bottom-Up Control in Leaf-Cuttings Ants
    Effects of forest fragmentation on bottom-up control in leaf-cuttings ants Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades Fachbereich Biologie Technische Universität Kaiserslautern vorgelegt von M.Sc. Pille Urbas Kaiserslautern, Dezember 2004 1. Gutachter: Prof. Dr. Burkhard Büdel 2. Gutachter: PD Dr. Jürgen Kusch Vorsitzender der Prüfungskommission: Prof. Dr. Matthias Hahn ACKNOWLEDGEMENTS I ACKNOWLEDGEMENTS I wish to thank my family for always being there; Joachim Gerhold who gave me great support and Jutta, Klaus and Markus Gerhold who decided to provide me with a second family; my supervisors Rainer Wirth, Burkhard Büdel and the department of Botany, University of Kaiserslautern for integrating me into the department and providing for such an interesting subject and the infrastructure to successfully work on it; the co-operators at the Federal University of Pernambuco (UFPE), Brazil - Inara Leal and Marcelo Tabarelli - for their assistance and interchange during my time overseas; the following students for the co-operatation in collecting and analysing data for some aspects of this study: Manoel Araújo (LAI and LCA leaf harvest), Ùrsula Costa (localization and size measurements of LCA colonies), Poliana Falcão (LCA diet breadth) and Nicole Meyer (tree density and DBH). Conservation International do Brasil, Centro de Estudos Ambientais do Nordeste and Usina Serra Grande for providing infrastructure during the field work; Marcia Nascimento, Lourinalda Silva and Lothar Bieber (UFPE) for sharing their laboratory, equipment and knowledge for chemical analyses; Jose Roberto Trigo (University of Campinas) for providing some special chemicals; my friends in Brazil Reisla Oliveira, Olivier Darrault, Cindy Garneau, Leonhard Krause, Edvaldo Florentino, Marcondes Oliveira and Alexandre Grillo for supporting me in a foreign land.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • Fruits: Kinds and Terms
    FRUITS: KINDS AND TERMS THE IMPORTANT PART OF THE LIFE CYCLE OFTEN IGNORED Technically, fruits are the mature ovaries of plants that contain ripe seeds ready for dispersal • Of the many kinds of fruits, there are three basic categories: • Dehiscent fruits that split open to shed their seeds, • Indehiscent dry fruits that retain their seeds and are often dispersed as though they were the seed, and • Indehiscent fleshy fruits that turn color and entice animals to eat them, meanwhile allowing the undigested seeds to pass from the animal’s gut We’ll start with dehiscent fruits. The most basic kind, the follicle, contains a single chamber and opens by one lengthwise slit. The columbine seed pods, three per flower, are follicles A mature columbine follicle Milkweed seed pods are also large follicles. Here the follicle hasn’t yet opened. Here is the milkweed follicle opened The legume is a similar seed pod except it opens by two longitudinal slits, one on either side of the fruit. Here you see seeds displayed from a typical legume. Legumes are only found in the pea family Fabaceae. On this fairy duster legume, you can see the two borders that will later split open. Redbud legumes are colorful before they dry and open Lupine legumes twist as they open, projecting the seeds away from the parent The bur clover modifies its legumes by coiling them and providing them with hooked barbs, only opening later as they dry out. The rattlepods or astragaluses modify their legumes by inflating them for wind dispersal, later opening to shed their seeds.
    [Show full text]
  • Cultivar and Ecotype Recommendations for Partridge Pea
    SC NRCS November 2015 Cultivar and Ecotype recommendations for Partridge Pea and Switchgrass (Guidance for CRP, CP-36) Problematic cultivar of Chamaecrista fasciculata (Large-Flower Partridge Pea)- "Lark" (AR) – not recommended This cultivar grows thick and tall, can cause longleaf pine seedling mortality and dominate wildlife habitat planting areas reducing diversity Comanche (TX) and Riley (KS) are other cultivars available commercially but because they originated outside of the southeast and are adapted for portions of Missouri, Arkansas, Tennessee, Mississippi, Louisiana, Oklahoma, and Texas; they are not recommended. Recommended/preferred alternatives: Large-Flower Partridge Pea (Chamaecrista fasciculata) - Florida ecotype or other Southeastern Regional ecotypes are available commercially - Seed vendors should provide seed ecotype information. Use light rate at 0.5 lb./acre or less. Use the closest ecotype available. If using large-flower partridge pea, do not seed until longleaf are several feet tall. Small-Flower Partridge Pea (Chamaecrista nictitans)- this species is smaller in stature and will not dominate or over-top longleaf seedlings. Slender Bushclover (Lespedeza virginica), Roundhead Lespedeza (Lespedeza capitata), Hairy Lespedeza (Lespedeza hirta); use 0.4 lbs. per acre or less Tick-trefoil/Beggar's Lice species: Desmodium canadense, D. floridanum, D. paniculatum, D. perplexum Wild Blue Lupine (Lupinus perennis), Goat's Rue (Tephrosia virginiana), or Butterfly Pea or Spurred Butterfly Pea (Clitoria mariana or Centrosema virginianum) Baptisia/Wild Indigo (Baptisia albescens, B. alba, B. australis, B. perfoliata, B. tinctoria) Sensitive Briar (Mimosa quadrivalvis or Mimosa microphylla) ← ↑ seeding rate for these: 0.1 to 0.5 lbs. per acre Problematic cultivars of Panicum virgatum (Switchgrass) – “Alamo” (TX), “Kanlow” (OK) – Not recommended - varieties were developed for forage and burn at the same BTU as a low grade coal).
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Sinopse Botânica Da Subfamília Mimosoideae (Fabaceae) Para a Flora De Mato Grosso, Brasil
    46 SINOPSE BOTÂNICA DA SUBFAMÍLIA MIMOSOIDEAE (FABACEAE) PARA A FLORA DE MATO GROSSO, BRASIL Germano Guarim Neto¹ Karina Gondolo Gonçalves² Margô De David3 RESUMO: (Sinopse botânica da subfamília Mimosoideae (Fabaceae) para a flora de Mato Grosso, Brasil) – A subfamília Mimosoideae (família Fabaceae) apresenta cerca de 82 gêneros com aproximadamente 3.271 espécies, distribuídas nas mais variadas regiões do globo terrestre. O presente estudo objetiva a sinopse botânica, envolvendo a morfologia e atualização taxonômica da subfamília, considerando os gêneros e as espécies que ocorrem na diversificada flora mato-grossense. Essas espécies foram coletadas em diferentes municípios nos três biomas mato-grossense: cerrado, pantanal e floresta. Assim, são apresentadas 97 espécies distribuídas em 21 gêneros da subfamília Mimosoideae, catalogadas para a flora de Mato Grosso de acordo com as coleções do Herbário Central da Universidade Federal de Mato Grosso (Herbário UFMT). Entre os gêneros, os mais representativos foram Inga e Mimosa. Palavras-chave: Fabaceae. Mato Grosso. Cerrado. ABSTRACT: (Subfamily of botany synopsis Mimosoideae (Fabaceae) for the flora of Mato Grosso, Brazil) - The subfamily Mimosoideae (Fabaceae) has about 82 genera with about 3.271 species, distributed in various regions of the globe. The aim of this study botany synopsis, involving the morphology and taxonomic subfamily update, considering the genera and species that occur in diverse Mato Grosso flora. These species were collected in different municipalities in the three Mato Grosso biomes: savanna, wetland and forest. Thus, we present 97 species in 21 genera of the subfamily Mimosoideae, cataloged for the Mato Grosso flora according to the collections of the Herbarium Center Federal University of Mato Grosso (Herbarium UFMT).
    [Show full text]
  • Role of Tree Size in Moist Tropical Forest Carbon Cycling and Water Deficit Responses Authors: Victoria Meakem, Alan J
    Research Role of tree size in moist tropical forest carbon cycling and water deficit responses Victoria Meakem1, Alan J. Tepley1, Erika B. Gonzalez-Akre1, Valentine Herrmann1, Helene C. Muller-Landau2, S. Joseph Wright2, Stephen P. Hubbell2,3, Richard Condit2 and Kristina J. Anderson-Teixeira1,2 1Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA; 2Center for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa Ancon, Panama, Republic of Panama; 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA Summary Author for correspondence: Drought disproportionately affects larger trees in tropical forests, but implications for forest Kristina J. Anderson-Teixeira composition and carbon (C) cycling in relation to dry season intensity remain poorly under- Tel: +1 540 635 6546 stood. Email: [email protected] In order to characterize how C cycling is shaped by tree size and drought adaptations and Received: 3 March 2017 how these patterns relate to spatial and temporal variation in water deficit, we analyze data Accepted: 27 April 2017 from three forest dynamics plots spanning a moisture gradient in Panama that have experi- enced El Nino~ droughts. New Phytologist (2017) At all sites, aboveground C cycle contributions peaked below 50-cm stem diameter, with doi: 10.1111/nph.14633 stems ≥ 50 cm accounting for on average 59% of live aboveground biomass, 45% of woody productivity and 49% of woody mortality. The dominance of drought-avoidance strategies Key words: biomass, drought adaptation, El increased interactively with stem diameter and dry season intensity. Although size-related C Nino,~ tree mortality, tree size, tropical moist cycle contributions did not vary systematically across the moisture gradient under nondrought forest, woody productivity.
    [Show full text]
  • Chapter 1 Definitions and Classifications for Fruit and Vegetables
    Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding
    [Show full text]