Bioethics for Biotechnologists: from Dolly to CRISPR

Total Page:16

File Type:pdf, Size:1020Kb

Bioethics for Biotechnologists: from Dolly to CRISPR Open Agriculture. 2017; 2: 160–165 Review Article Open Access D. Caballero-Hernandez*, C. Rodríguez-Padilla, S. Lozano-Muñiz Bioethics for Biotechnologists: From Dolly to CRISPR DOI 10.1515/opag-2017-0016 Received January 5, 2017; accepted February 22, 2017 1 Introduction Abstract: Bioethics, as a discipline, has developed mainly, but Bioethics has evolved from a discipline mostly perceived as not exclusively, around themes of moral importance for the being focused on moral issues ranging from medical practice medical practice, such as abortion and euthanasia, a never to a wider endeavor where concerns regarding the nature ending discussion that has been shaped by social mores and of human identity, animal welfare and the environment influenced by scientific and technological advance. However, are becoming increasingly important, if not central. This is in the past 20 years an important shift has been taking place, the result of the unrelenting pace at which the life sciences one where bioethical issues and their discussion are starting and biotechnology are advancing, defying old paradigms to being driven by the so-called emerging biotechnologies, and creating new ones. The past 20 years have witnessed 3 from cloning to genome sequencing and editing. If Bioethics milestones in the life sciences; the birth of the first cloned is concerned with human beings, and their interaction with mammal, Dolly (Callaway 2016), the completion of the other living beings and the environment, it makes sense for Human Genome Project (Venter et al. 2001) and the discovery Biotechnology, by definition the use of living systems or and harnessing of CRISPR, a game changer in the field of organisms to develop products, to become an important, genome editing (Mariscal and Petropanagos 2016). if not the most important, source of bioethical conflicts in The main goal of biotechnology is and has always been modern era and for future society. As Biotechnology keeps to improve people’s lives; this is in line with ethical goals expanding and becomes entangled in everyday life, so and is in itself an ethical vision. Animal domestication, does the need for ethical competent biotechnologists, with agriculture and fermentation, all contributed to a competencies built not only on ethical principles but also on better quality of life with the consequent expansion of a realistic grasp of the impact these technologies could have human population through the planet. More recently, on human society and the world we inhabit. technological and medical advances such as nitrogen fixation, vaccines and antibiotics have contributed to a Keywords: Biotechnology, genome editing, animal longer life expectancy and population explosion arising cloning, ethics, fairness, biothreats, biosafety, biosecurity important issues, perhaps the most important the allocation of resources in a world edging close to ecological exhaustion. It is to be expected that many of the emerging biotechnologies of today will become an established part of daily life in the future. But will these changes be positive *Corresponding author: D. Caballero-Hernandez, Laboratorio for society? Have the risks and benefits been analysed? de Inmunología y Virología, Facultad de Ciencias Biológicas, All these changes often occur without consultation with Universidad Autónoma de Nuevo León (UANL), Mexico, E-mail: the general population, and sometimes without ethical [email protected] reflection on the part of the scientists and technologists C. Rodríguez-Padilla, Laboratorio de Inmunología y Virología, Facult- ad de Ciencias Biológicas, Universidad Autónoma de Nuevo León involved (O’Mathúna 2007). (UANL), Mexico S. Lozano-Muñiz, Universidad del Papaloapan, Mexico S. Lozano-Muñiz,Sociedad Mexicana de Biotecnología y Bioinge- 2 Biotechnology: the road to niería, Delegación Oaxaca, Mexico S. Lozano-Muñiz,International Foundation for Biotechnology Re- genetic engineering search & Early Stimulation in the Culture of Health, Nutrition, Sport, Art, Science, Technology & Society.A.C.- International Biotechnology The history of biotechnology can be roughly divided Foundation, Mexico into three categories: Ancient Biotechnology, Classical © 2017 D. Caballero-Hernandez et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivsBrought 3.0 License. to you by | Universidad Autónoma de Nuevo León Authenticated Download Date | 3/13/19 9:20 PM Bioethics for Biotechnologists: From Dolly to CRISPR 161 Biotechnology and Modern Biotechnology. While ancient biotechnology can be described as a series of developments, such as the domestication of plants and animals and sometimes accidental discoveries, like bread, cheese and wine, Classical Biotechnology lingers as a transitional period were the fundamental tenets of genetics and molecular biology were established. Modern Biotechnology officially started from the second half of the 20th century with the development of tools for the manipulation of nucleic acids, cloning and recombinant DNA technology (rDNA), critical for the development of genetic engineering (Verma et al. 2011). It is interesting to note that Bioethics and Modern Biotechnology were born around the same time and although there is discrepancy regarding the origin of the word “bioethics” there is agreement it was coined between 1970 and 1972 (Pellegrino 1999; Martensen 2001). In 1972, Paul Berg created the first recombinant DNA molecule; the next year Boyer and Figure 1: Genetic engineering (GE) involves the manipulation and/ Cohen created the first genetically modified organism, or modification of the genome of living beings, for 3 decades recom- these events marked the birth of genetic engineering as a binant DNA remained the main tool of GE but recently, engineered force for technological advance (Giassetti 2013). endonucleases (GEEN) such as ZFNs and TALENs have proved to For almost three decades, up to 2012, recombinant be a more precise and efficient tool, the discovery of the CRISPR/ DNA technology had proved to be a solid tool for genetic Cas9 system took this one step further, revolutionizing GE. To differentiate from recombinant DNA technology, the modification of engineering. Despite limitations: time-consuming, lacks genomes using endonucleases is known as genome editing. Despite precision, low efficiency and high costs, it remained for not involving modification of the genome, cloning is considered by many years the backbone of genetic engineering, along many a type of GE with DNA sequencing and the Polymerase Chain Reaction (PCR). Given the limitations of the technique, rDNA was CRISPR stands for Clustered regularly interspaced better suited for single cell organisms and bacteria, and short palindromic repeats, short snippets of viral DNA since the 1970’s a vast array of medical and industrial inserted into a bacterial genome, acting as spacers applications have been developed: human insulin and and working as a template to synthesize a type of growth hormone-producing recombinant bacteria being interference RNA, able to recognize specific points among the most important. Recombinant DNA technology in the genome of an infecting virus to mark sites to also became a tool for research in laboratories around the be cut by nucleases (Gaj et al. 2013). Cas9 is the most world. recognized of these nucleases, but others, such as Genome editing as a new approach in genetic Cpf1, have been recently discovered, expanding the engineering started to develop recently and aim to toolbox of genetic engineering. If recombinant DNA manipulate the genome by adding, subtracting or technology was a step forward, CRISPR could be replacing genes inducing site-specific breaks in the DNA described as a quantum leap for genetic engineering using nucleases, enzymes able to cut DNA, and taking and for the emerging biotechnologies of transgenic advantage of the natural DNA repair system to close the plant and animal development, synthetic biology, gap. Zinc-finger nucleases (ZFN) were discovered in 2002, nanotechnology, xenotransplantation, gene therapy followed by transcription activator-like effector nucleases and population control through gene drives. These (TALENs), which represented a significant advance in so-called emerging biotechnologies represent the next the ability to control the manipulation of DNA. However, stage in the development of Biotechnology one that despite the improvement in precision, both ZFN and now aspires not only to use living beings to develop TALENs still needed significant expertise and resources, products, but also to tailor organisms through genome limiting widespread use. This all changed with the editing or synthetic biology approaches, to obtain discovery of CRISPR/Cas9, a natural system of bacterial new products for human use and consumption. These defense against bacteriophages, reinvented as a precision technologies make the ethical training of students and tool for the editing of the genome (Maxmen 2015; Au 2015) Brought to you by | Universidad Autónoma de Nuevo León Authenticated Download Date | 3/13/19 9:20 PM 162 D. Caballero-Hernandez, et al. professionals of biotechnology in general even more 4 Ethical reflection in urgent (Rasmussen and Ebbesen 2014). Biotechnology The four ethical principles are useful for the discussion of the many challenges brought by emerging biotechnologies, particularly DNA-based technologies. The first ethical principle is beneficence, a moral imperative to contribute to other people’s
Recommended publications
  • Observation and a Numerical Study of Gravity Waves During Tropical Cyclone Ivan (2008)
    Open Access Atmos. Chem. Phys., 14, 641–658, 2014 Atmospheric www.atmos-chem-phys.net/14/641/2014/ doi:10.5194/acp-14-641-2014 Chemistry © Author(s) 2014. CC Attribution 3.0 License. and Physics Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008) F. Chane Ming1, C. Ibrahim1, C. Barthe1, S. Jolivet2, P. Keckhut3, Y.-A. Liou4, and Y. Kuleshov5,6 1Université de la Réunion, Laboratoire de l’Atmosphère et des Cyclones, UMR8105, CNRS-Météo France-Université, La Réunion, France 2Singapore Delft Water Alliance, National University of Singapore, Singapore, Singapore 3Laboratoire Atmosphères, Milieux, Observations Spatiales, UMR8190, Institut Pierre-Simon Laplace, Université Versailles-Saint Quentin, Guyancourt, France 4Center for Space and Remote Sensing Research, National Central University, Chung-Li 3200, Taiwan 5National Climate Centre, Bureau of Meteorology, Melbourne, Australia 6School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia Correspondence to: F. Chane Ming ([email protected]) Received: 3 December 2012 – Published in Atmos. Chem. Phys. Discuss.: 24 April 2013 Revised: 21 November 2013 – Accepted: 2 December 2013 – Published: 22 January 2014 Abstract. Gravity waves (GWs) with horizontal wavelengths ber 1 vortex Rossby wave is suggested as a source of domi- of 32–2000 km are investigated during tropical cyclone (TC) nant inertia GW with horizontal wavelengths of 400–800 km, Ivan (2008) in the southwest Indian Ocean in the upper tropo- while shorter scale modes (100–200 km) located at northeast sphere (UT) and the lower stratosphere (LS) using observa- and southeast of the TC could be attributed to strong local- tional data sets, radiosonde and GPS radio occultation data, ized convection in spiral bands resulting from wave number 2 ECMWF analyses and simulations of the French numerical vortex Rossby waves.
    [Show full text]
  • Dolly the Sheep – the First Cloned Adult Animal
    DOLLY THE SHEEP – THE FIRST CLONED ADULT ANIMAL NEW TECHNOLOGY FOR IMPROVING LIVESTOCK From Squidonius via Wikimedia Commons In 1996, University of Edinburgh scientists celebrated the birth of Dolly the Sheep, the first mammal to be cloned using SCNT cloning is the only technology adult somatic cells. The Edinburgh team’s success followed available that enables generation of 99.8% its improvements to the single cell nuclear transfer (SCNT) genetically identical offspring from selected technique used in the cloning process. individuals of adult animals (including sterilized animals). As such, it is being Dolly became a scientific icon recognised worldwide and exploited as an efficient multiplication tool SCNT technology has spread around the world and has been to support specific breeding strategies of used to clone multiple farm animals. farm animals with exceptionally high genetic The cloning of livestock enables growing large quantities of value. the most productive, disease resistant animals, thus providing more food and other animal products. Sir Ian Wilmut (Inaugural Director of MRC Centre for Regeneration and Professor at CMVM, UoE) and colleagues worked on methods to create genetically improved livestock by manipulation of stem cells using nuclear transfer. Their research optimised interactions between the donor nucleus and the recipient cytoplasm at the time of fusion and during the first cell cycle. Nuclear donor cells were held in mitosis before being released and used as they were expected to be passing through G1 phase. CLONING IN COMMERCE, CONSERVATION OF AGRICULTURE AND PRESERVATION ANIMAL BREEDS OF LIVESTOCK DIVERSITY Cloning has been used to conserve several animal breeds in the recent past.
    [Show full text]
  • Laser Interferometer Space Antenna What Is LISA?
    Volume 11 number 4 2003 FALL Quarter A FLIGHT PROGRAMS AND PROJECTS DIRECTORATE QUARTERLY PUBLICATION A Newsletter Published for Code 400 Employees INSIDE Laser Interferometer Space Antenna THIS What is LISA? ISSUE: How did the Universe begin? Does time have a beginning and an end? Does What is LISA? Page 1 space have edges? These are the questions we've struggled to answer for cen- Solar Dynamic Observatory Page 1 turies. Science and technology have now reached the point where answers to these questions are finally within our grasp. The Laser Interferometer Space Message From The Director Of Page 2 Antenna (LISA) may supply some of these answers as the mission studies Peer Award Ceremony & Picnic Page 2 the mergers of supermassive black holes, tests Einstein's Theory of General Tintypes Page 3 Relativity, probes the early Universe, and searches for gravitational waves—— its primary objective. Feedback Page 3 As the first dedicated space-based gravitational wave observatory, LISA will Technology Corner Page 6 detect waves generated by binaries within our Galaxy (the Milky Way) and Quotes of the Quarter Page 7 by massive black holes in distant galaxies. LISA will use an advanced system of laser interferometry for directly detecting and measuring them. This OBPR Free-Flyer Page 10 Best of the Best Page 12 (LISA Continued on page 4) The English Language Page 13 Peer Awards Page 14 Living with a Star Program – NASA Honor Awards Page 16 Solar Dynamics Observatory TCP Social News Page 19 Developing an understanding of the Sun took on a renewed sense of ur- Cultural Tidbits Page 19 gency during late October/early November.
    [Show full text]
  • Guide to Biotechnology 2008
    guide to biotechnology 2008 research & development health bioethics innovate industrial & environmental food & agriculture biodefense Biotechnology Industry Organization 1201 Maryland Avenue, SW imagine Suite 900 Washington, DC 20024 intellectual property 202.962.9200 (phone) 202.488.6301 (fax) bio.org inform bio.org The Guide to Biotechnology is compiled by the Biotechnology Industry Organization (BIO) Editors Roxanna Guilford-Blake Debbie Strickland Contributors BIO Staff table of Contents Biotechnology: A Collection of Technologies 1 Regenerative Medicine ................................................. 36 What Is Biotechnology? .................................................. 1 Vaccines ....................................................................... 37 Cells and Biological Molecules ........................................ 1 Plant-Made Pharmaceuticals ........................................ 37 Therapeutic Development Overview .............................. 38 Biotechnology Industry Facts 2 Market Capitalization, 1994–2006 .................................. 3 Agricultural Production Applications 41 U.S. Biotech Industry Statistics: 1995–2006 ................... 3 Crop Biotechnology ...................................................... 41 U.S. Public Companies by Region, 2006 ........................ 4 Forest Biotechnology .................................................... 44 Total Financing, 1998–2007 (in billions of U.S. dollars) .... 4 Animal Biotechnology ................................................... 45 Biotech
    [Show full text]
  • Evolution of Multiscale Vortices in the Development of Hurricane Dolly (2008)
    JANUARY 2011 F A N G A N D Z H A N G 103 Evolution of Multiscale Vortices in the Development of Hurricane Dolly (2008) JUAN FANG Key Laboratory of Mesoscale Severe Weather (MOE), Department of Atmospheric Sciences, Nanjing University, Nanjing, China FUQING ZHANG Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 6 April 2010, in final form 6 July 2010) ABSTRACT As a follow-up to a previously published article on the initial development and genesis of Hurricane Dolly (2008), this study further examines the evolution of, and interactions among, multiscale vortices ranging from the system-scale main vortex (L . 150 km) to the intermediate-scale cloud clusters (50 km , L , 150 km) and individual vorticity-rich convective cells (L , 50 km). It is found that there are apparent self-similarities among these vortices at different scales, each of which may undergo several cycles of alternating accumulation and release of convective available potential energy. Enhanced surface fluxes below individual cyclonic vortices at each scale contribute to the sustainment and reinvigoration of moist convection that in turn contributes to the maintenance and upscale growth of these vortices. Spectral analysis of horizontal divergence and relative vorticity further suggests that the cloud-cluster-scale and system-scale vortices are predominantly balanced while the individual convective vortices are largely unbalanced. The vorticity and energy produced by these individual vorticity-rich convective cells first saturate at convective scales that are subsequently transferred to larger scales. The sum of the diabatic heating released from these convective cells may be regarded as a persistent forcing on the quasi-balanced system-scale vortex.
    [Show full text]
  • Development of Transgenic Livestock with Reduced Myostatin
    DEVELOPMENT OF TRANSGENIC LIVESTOCK WITH REDUCED MYOSTATIN EXPRESSION USING RNA INTERFERENCE A Dissertation by KIMBERLY JEAN TESSANNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2009 Major Subject: Veterinary Physiology DEVELOPMENT OF TRANSGENIC LIVESTOCK WITH REDUCED MYOSTATIN EXPRESSION USING RNA INTERFERENCE A Dissertation by KIMBERLY JEAN TESSANNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Mark Westhusin Committee Members, Charles Long Thomas Spencer Nancy Ing Head of Department, Glen Laine December 2009 Major Subject: Veterinary Physiology iii ABSTRACT Development of Transgenic Livestock with Reduced Myostatin Expression Using RNA Interference. (December 2009) Kimberly Jean Tessanne, B.S., The Ohio State University; M.S., University of Wisconsin-Madison Chair of Advisory Committee: Dr. Mark Westhusin RNA interference (RNAi) is a means of regulating gene expression by targeting mRNA in a sequence-specific manner for degradation or translational inhibition. Short hairpin RNAs (shRNAs) and short interfering RNAs (siRNAs) have been extensively employed for manipulating gene expression in a wide range of species. The goal for this research was to produce transgenic livestock in which myostatin, a negative regulator of muscle growth, has been targeted for silencing by RNAi. This would demonstrate the utility of RNAi for reducing gene expression in large animal species. To successfully target the myostatin gene for reduction, siRNAs were designed to target the both the bovine and caprine myostatin mRNA sequence.
    [Show full text]
  • The Rotary Club of Richmond
    TABLE OF CONTENTS RI President Kalyan Banerjee Bio ..................................4 INTERNATIONAL SERVICE RI President Kalyan Banerjee Letter ..............................5 2008 Refilwe Project .....................................................50 Letter from PM Stephen Harper .....................................6 Disaster Relief ...............................................................51 Letter from MP Alice Wong ...........................................7 2007 Joint Wheelchair Project .....................................52 Letter from Premier Christy Clark ..................................8 Aid for Children in Trinidad .........................................52 Letter from MLA Linda Reid ..........................................9 Korle-Bu Neuroscience .................................................53 Letter from Mayor Malcolm Brodie ..............................10 2009 Shoes for Sri Lanka ..............................................53 Letter from District Governor Hans Doge ...................11 The Rotary Foundation.................................................54 Rotary Club President Ken Whitney Bio ......................12 PolioPlus ........................................................................54 About Rotary & Paul P. Harris ......................................13 Paul Harris Fellows ........................................................55 Guiding Principles .........................................................14 Ambulance Projects ......................................................56
    [Show full text]
  • Cloning After Dolly
    Cloning after Dolly Professor Derek Burke 'Cloning' is a loose term used to describe everything from a new super race of identical near- robots (remember 'The Boys from Brazil'?) to propagating your roses. It actually means a twig, so it starts from the horticultural end, but is used much more widely. Dolly was the first cloned mammal and must be the most famous sheep in the world. Two things made her famous: first that she is an artificially induced clone, genetically identical to a previously existing sheep, for Dolly can be thought of as a vertical twin with identical genes, in this case to the parent. Second is the way in which it was done. The scientists took the nucleus from a cell from the udder of an adult sheep and implanted it in an egg cell whose original nucleus had been removed. Very surprisingly, the adult cell DNA was able to give rise to a complete individual, not just more udder cells. This was surprising because, although at the earliest stage of development the DNA is still pluripotent, capable of generating the growth of the whole animal, later in development, specialization sets in, and cells become differentiated into heart cells, liver cells etc. The whole of the genetic material is still there, but most of it is switched off and only the genes relevant to that particular cell are active. It had been thought that this process of differentiation in mammals was irreversible, so that an udder cell could only give rise to more udder cells. But we now know that differentiation can be reversed.
    [Show full text]
  • Cessation of Anadromy in a Long-Lived Fish
    Ecology, 96(7), 2015, pp. 1899–1910 Ó 2015 by the Ecological Society of America Beyond dichotomous life histories in partially migrating populations: cessation of anadromy in a long-lived fish 1,3 2 1 MORGAN H. BOND, JESSICA A. MILLER, AND THOMAS P. QUINN 1School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington 98195 USA 2Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 97365 USA Abstract. Across animal taxa, migration allows individuals to exploit habitats and resources that predictably vary seasonally in suitability. Theory predicts that the ‘‘decision’’ to migrate or not is shaped by the relative fitness costs and benefits of exhibiting a given life history. Adoption of a migratory strategy is widely thought to reflect a dichotomous outcome; individuals are either resident or migratory, and continue to exhibit this life history until death. In fishes, anadromy and freshwater residency represents a well-studied life history dichotomy. Resident individuals may adopt a migratory life history later in life, but migratory individuals are not known to abandon this pattern. Here, we investigated the fitness benefits, as measured by body size, of residency and anadromy in a salmonid fish, Dolly Varden, Salvelinus malma, in Alaska, and reveal a novel life history: cessation of migration by older, larger individuals. Otolith microchemical analysis of Dolly Varden showed that while most fish migrated to sea at least once in their lives, lifelong resident fish exist in streams with close proximity to the ocean.
    [Show full text]
  • Genetic Cloning and Testing
    Genetic Cloning and Testing BACKGROUND Genetic Cloning or years, humans successfully have used myriad genetic techniques—from GLOSSARY Fselective breeding to genetic manipulation—to create plants and animals Chromosome with desirable characteristics. Corn has been genetically engineered to improve Units in the nucleus of a cell, resistance to fungus and viral infections, rot, and drought, and calves have been composed of DNA, that contain genes; normal human somatic cells genetically altered to accelerate the growth process, to cite two examples. contain 46 chromosomes (23 pair). Clone Genetic cloning is a comparatively new process that uses the DNA contained in Duplicate. cells to “clone,” or duplicate, strands of DNA, cells, or organisms to achieve DNA Deoxyribonucleic acid; the material exact copies of the original. These genetic clones are analogous to identical inside the nucleus of a cell that human twins—two genetically identical individuals whose development can be carries genetic information. traced to the division of a single embryo. For some time, scientists have known Embryo The prefetal product of conception that multiple animals could be created in the same way that human twins are from implantation through the 12th created: by dividing a single embryo into multiple embryos shortly after fertiliza- week of development. An embryo conceived through sexual tion. This creates offspring that are genetically identical to each other and have reproduction receives half its genetic received their genetic information from each sexual parent (half from the male, information from each sexual parent—that is, half comes from half from the female). the sperm and half from the egg.
    [Show full text]
  • Cloning a Plasmid
    Dolly, herself http://oracleformsinfo.files.wordpress.com/2012/03/clone.jpg Dolly the sheep, who became famous as the first mammal to be cloned from an adult cell, has died. The news was confirmed on Friday by the Roslin Institute, the Scottish research centre which created her. A decision was taken to "euthanize" six-year-old Dolly after a veterinary examination showed that she had a progressive lung disease, the institute said in a statement. Dolly became the first mammal clone when she was born on 5 July 1996. She was revealed to the public the following year. http://martinfrost.ws/htmlfiles/roslin_dolly.html What is a clone? A clone is a • Pieces of DNA group of • Plasmids genetically • Bacteria identical … ummm….. • Eukaryotic cells in vivo • Eukaryotic cells Thingies? • Organisms • Other examples? http://media.moddb.com/images/downloads/1/25/24418/Star_wars_the_clone_wars.jpg To DNA (& etc) http://anglelakesc.blogspot.com/2011/10/road-construction-detours.html Cloning a plasmid http://wiki.biomine.skelleftea.se/wiki/images/9/93/Cloning_with_the_help_of_LacZ_.png Do clones occur in nature? • Identical twins • Lymphocytes • An embryo … http://cadencemag.com/wp-content/uploads/2012/03/twins.gif YOU are a clone of your original fertilized egg! Are cloned cells identical? -- genetically? -- functionally? How? Why? Why not? Dolly & her baby – so Dolly was fertile Fertility is a common measure of whether a genome is really complete http://news.bbc.co.uk/2/hi/science/nature/2764039.stm First Cloned Mouse Dies Of Old Age: Technique Believed More Reliable Than That Used For Dolly The Sheephttp://www.cbsnews.com/stories/2000/05/10/tech/main193799.shtml • Why clone? • Clone what ? • Humans – Whole? • Financial benefit – Parts? • Convenience • Animals • Uniformity – Agricultural • Personal emotion – Environmental restoration • Medical intervention – Fun – e.g.
    [Show full text]
  • BSCI410-Liu/SP09 Midterm Exam #2/Apr. 14 Your Name
    BSCI410-Liu/SP09 Midterm Exam #2/Apr. 14 Your Name: 1. (28 points total) Scientists are trying to unlock the molecular basis of a mysterious hereditary disease named DEAN SYMDROM (DS). ds mutant mice show a lack of memory and ds/ds mutant mice, when crossed with wild type (+/+) mice, produces progeny that also show memory loss. (a) (4 points) Is the ds mutation recessive or dominant? dominant (b) (4 points) Using molecular markers such as SNPs, scientists have mapped the putative DS gene to a small chromosomal region. This region contains three genes: X, Y, and Z. Design an experiment to test the expression of X, Y, and Z genes. Which tissue do you expect the candidate DS gene to be expressed in? Northern blot, RT-PCR, in situ hybridization to see which gene is expressed in brain tissue (c) (8 points) Through the above experiments, scientists identified gene Y that is expressed in the expected tissue. List two additional experiments that will definitely prove that gene Y is the DS gene. 1) sequence mutant mice DNA and compare with WT. If one detects a mutation in Y in the mutant mice, it would prove it. 2) Transgenic study - Introduce the mutant gene into the WT mouse to see if it causes memory loss (cannot introduce WT into mutant mouse to rescue because the mutation is dominant) I also took other reasonable answers. NOTE: Testing RNA expression will not definitely prove that gene Y is the DS gene. (d) (8 points) After identifying the mouse DS gene, you now have the DNA sequence of the mouse DS gene.
    [Show full text]