Download This PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Download This PDF File Sergey P. Gorshkov1*, Laurent Touchart2, Olga I. Mochalova3, Andrey Yu. Ozerskiy4, Larissa S. Evseeva1 1 Faculty of Geography, Lomonosov Moscow State University * Corresponding author, e-mail: [email protected] 2 The University of Orleans 3 Environmental Initiatives Centre, Design Bureau, LLC 4 Krasnoyarsk Mining and Geological Company FROM PONDS TO MAN-MADE SEAS ENVIRONMENT IN RUSSIA 65 ABSTRACT. Russia has more than 2200 development, which was only natural reservoirs and large ponds. As time went by, under the existing totalitarian regime. The ponds lost their importance in some aspects Civil War of 1917–1922, confiscation of food of human life, while newly created man-made by the government, crop failures and famines seas impacted the nature and the people in in the early 1920s and 1930s, dekulakization two ways. The costs involved in designing, and collectivization, and industrialization constructing, and operating the artificial seas, aimed at developing the military industry especially on the plains, have been too high to took place amid the repressive crackdown consider them as an undisputed achievement and GULAG camps. Under the circumstances, of the Soviet scientists transforming the nature. the authorities had to make some highly This paper discusses the problem of ponds and questionable decisions relating to land man-made seas in Russia. ownership and the public. Josef Stalin and his henchmen took extremely tough social and KEY WORDS: mega projects, quantum leap, economic measures to make a quantum leap in overflowing, giant reservoir, large industrial the military and industrial development using complex, environmental damage, drift wood, coercion, punitive measures, and propaganda. abrasion, landslide processes, intensification Providing economy with electric power was of karst, disintegration of family relationships. one of the main problems facing the country at that time. Large hydroelectric power stations INTRODUCTION were regarded as a way of dealing with this issue. Man-made seas were created with this Construction of ponds was wide-spread in purpose in mind. This looked more like an Russia before the 1917 revolution. At the turn obsession with gigantic projects. It was forced of the 20th, city ponds were mostly used for upon and imposed by Josef Stalin. In the 1930s, recreational purposes. Water released from the country had about 60,000 water engines. the ponds in rural areas of Nechernozemye By the 1950s, almost all water and wind engines provided power for mills and sawmills. were out of operation due to wear and tear, as This was the main function of local ponds, well as massive overflows of reservoirs, which although they were also used in goose and caused the agricultural lands to be flooded. duck breeding and for other purposes. Ponds Many ponds, though still remaining in the became widespread in the arid areas primarily rural areas, gradually fell into disuse due to because of the need to supply the agricultural lack of proper care. Therefore, their recreational lands with water. Construction of ponds potential also diminished. Urban ponds were played a significant role in the economy and not managed in the best way either. Some of recreational infrastructure of the Tsarist Russia. them were scrapped altogether. The post-revolutionary period after In 1956, the cult of Stalin was exposed and October 25, 1917, saw hard times for pond shortly after that, the GULAG network was gi413.indd 65 15.01.2014 9:17:31 abandoned. More benevolent totalitarian water for fighting fires. People used them regime meant fewer possibilities for for washing clothes and even for bathing. exploiting convicts. However, technological During the last few centuries, the city power of the country, which won the World authorities shut down about 700 ponds. War II, grew significantly. With the help of the Now, many of them can only be found propaganda campaign, the construction of in historical records or on the pages of the tallest dam in the world or the creation works of fiction. The present-day Moscow’s of an enormous man-made sea was made Yaroslavsky Railway Station is located at the to look almost like an achievement equal to site of the ancient Red Pond, which was also ENVIRONMENT the first human space flight of Yuri Gagarin. called the Great Pond. That was one of the In this way Russia became the country with oldest ponds in Moscow, which was referred 66 the largest man-made seas that flooded to as the Great in the Annals since 1423. hundreds of settlements, several cities, huge Later, a royal village called Krasnoselskoye areas of arable land, grasslands, steppe, was founded not far from the pond, so woody, and even tundra pasture lands, from that time on the pond became known as well as vast areas of marshes, forests, as Krasnoselsky. Its area was 23 hectares. archaeological sites, ancient monuments, However, it has being shrinking gradually. In churches, bridges, and civil engineering the 19th century, the Krasnoselsky Pond was structures. used for sewage disposal and in 1910 it was shut down. The return to capitalism in the 1990s did not bring any improvement to the pond sector In the 17th century, the Zhivotinny Dvor of the Russian Federation. Even in Moscow, slaughterhouse was located next to the quality of water from ponds now is more Chistoprudny Boulevard. Wastewater was likely to be poor than good. Most ponds have discharged into the pond called Pogany lost their natural capacity for self-purification, (Rotten) for that reason. During the reign of while the banks are not protected against Peter the Great, Prince Alexander Menshikov washouts and sliding. However, the program bought this land plot. The building on the of ponds reclamation recently got underway corner of the street at the Myasnitsky Gate in Moscow, and it is being implemented, had belonged to him since 1699. The Prince though partially. The tradition of conquering built a church deep in the courtyard, which the nature did not change in terms of major was nicknamed Menshikov Tower, cleaned rivers. It has become increasingly difficult the pond and ordered to stop polluting it. to attract funds to finance mega projects Since then, the pond is referred to as Chistye in the water industry. However, there is no Prudy (Clean Ponds) (Fig. 1). guarantee that fragmentation of the great Russian rivers and overflowing of man-made Nowadays, Moscow has some 76 ponds seas, which were disastrous for wildlife and (Fig. 2). They are mainly used for recreation. damaging to the population, are a thing Some ponds are reserved for swimming. of the past. Meanwhile, the biosphere Ponds are filled with surface-, subterranean-, mechanism controlled by the fine-tuned and rainwater. The quality of water in interaction between the planetary biota Moscow’s ponds is often rather low. Most and non-living matter is already very much of the ponds have lost their natural capacity disturbed by the unbridled exploration of for self-purification and the banks are not the planet. protected against washouts and sliding. Activities aimed at keeping the ponds within PONDS the sanitary standards include: pumping of polluted water, collecting litter, dredging, There were far more ponds in the past. covering the bottom with gravel and sand, To give you an example, Moscow ponds protecting from sewage waters, landscaping were used for breeding fish. They provided the banks, filling with fresh water, reclaiming ggi413.inddi413.indd 6666 115.01.20145.01.2014 99:17:31:17:31 ENVIRONMENT 67 Fig. 1. Chistye Prudy in Moscow the adjacent terrain, introducing aquatic to accumulate snow and to prevent snow organisms, installing feeders for birds, and a from being blown away by wind; and c) by number of other activities [Moscow Ponds accumulating water in the ponds during the ..., 2007]. thaw, after which this water is redirected to the lowland meadows and fields to Both in the Tsarist Russia and during the temporarily flood them. Deployment of Soviet era before the collectivization, these and some other emergency measures which led to the compulsory formation of in such arid regions as Voronezh, Kharkov, collective farms, watermills and sawmills and Dnepropetrovsk proved to be efficient. running on water from the ponds were Experimental fields showed improved commonly used in the agricultural sector. microclimate and increased yields. About The Nechernozemye region, since it was 60,000 water engines were still in operation well-supplied with water resources, had in the country in the 1930s. By the 1950s, the best potential for the creation of pond almost all water and wind engines were engines. out of operation due to wear and tear, and because of massive overflows of reservoirs, Ponds were in especially high demand in which caused the rural lands to be flooded arid areas of Central and Southern European [Shipunov, 1988]. Russia since the 19th century due to the increased damage from severe droughts and MAN-MADE SEAS crop failures. These disasters were especially devastating in 1890–1892. V.V. Dokuchayev The idea to tap the power of the largest offered to capture and accumulate moisture Russia’s rivers has originated a long time in agricultural soils: a) by compacting snow ago. The project of the Zhiguli Hydropower on the fields; b) by creating forest strips Station (presently the Kuybyshevskaya ggi413.inddi413.indd 6677 115.01.20145.01.2014 99:17:31:17:31 Hydropower Station) on the Volga was political situation in Europe in 1920s–1930s developed in 1913 by G.M. Krzhizhanovsky. forced Josef Stalin and his entourage to use The Bratsk Hydropower Station project on the tough social and economic measures in order Angara was presented to the governor-general to make a quantum leap in the field of military of Irkutsk by A. Krutikov as early as in 1906.
Recommended publications
  • Characteristics of the Regime and Structure of Water Masses in the Volga Reservoirs
    Characteristics of the regime and structure of water masses in the Volga reservoirs N. V. Butorin Abstract. The characteristics of the hydrological regime of reservoirs is shown in peculiarities of the water balance, water circulation, level, wave, temperature and ice regimes. The peculiarities of the hydrological regime lead to heterogeneity in the physical and chemical characteristics of the water. Detailed analysis of these characteristics makes it possible to identify distinct water masses with different properties in reservoirs. Resume. Los traits spécifiques du regime hydrologique des reservoirs se manifestent dans les particularités du bilan hydrologique, de la circulation de l'eau et dans les particularités des régimes des vagues, des températures et des glaces. Ces particularités du régime hydrologique conduisent à l'hétérogénéité physique et chimique de la masse d'eau. L'analyse complexe des champs de ces caractéristiques nous permet d'établir la présence dans les réservoirs des masses d'eau présentant des particularités différentes. The use of natural water resources under modem technological progress is limited by the peculiarities of their geographical distribution, their seasonal and yearly fluctuations and also by considerable water pollution from domestic and industrial waste. One of the most effective means of controlling water resources is by creating reservoirs. Reservoirs are becoming an essential feature of the landscape. Each of them is a complex geographical object. Reservoirs differ from other water bodies in their bed morphology, in the interaction of the water mass with the bottom and the shores, in the physical and chemical properties of the waters and their dynamics, The main characteristic feature of a reservoir is its slow water exchange and the possibility of regulating it.
    [Show full text]
  • Analysis of the Constructive Features of the Earth Dam
    MATEC Web of Conferences 196, 02002 (2018) https://doi.org/10.1051/matecconf/201819602002 XXVII R-S-P Seminar 2018, Theoretical Foundation of Civil Engineering Analysis of the Constructive Features of the Earth Dam Mikhail Balzannikov1, 1Samara State University of Economics, 443090 Samara, 141 Sovetskoi Armii St, Russia Abstract. The article considers the earth dam of the run-of-river unit – Kuibyshev hydroelectric power station on the Volga river (Russia). The main parameters of the earth dam, peculiarities of its erection and operation are described. The article notes the importance of ensuring a high degree of reliability of water structures constructed near major cities. It is especially important to monitor the condition of retaining structures with long service life. The factors influencing the change of the initial design conditions of operation of the Kuibyshev run-of-river unit dam are discussed. The results of examination of the geometric parameters of the body of the dam, performed at different periods of its maintenance, are analyzed. Examination results revealed significant deviations of the elevation marks of the earth dam surface on the upstream side from the design values. Possible causes of the discrepancy between these parameters and the design solutions are considered. The conclusion is drawn that the most likely reason for these features of the dam design lies in the initial incompleteness of construction. The measures for carrying out repair work to improve the reliability of the earth dam are being recommended. 1 Introduction At present, ensuring reliable operation of retaining water structures is a very urgent requirement for both operating enterprises and design organizations [1, 2].
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Mechanism of Water Resource Inter-Industry Protection. Elmira F. Nigmatullina*, Maria B. Fardeeva, and Rimma R. Amirova. Kazan Federal University, Kremliovskaya str, 18, 420008, Kazan, Russian Federation. ABSTRACT Development of the water resource inter-industry protection mechanism becomes a major concern for water management in Russia. Introduction of Environmental Impact Assessment (EIA) interstate procedure of production hydroelectric power stations (HPS) construction projects, on condition of international parameter level development of rivers and lakes pollution comparative assessment, taking into account multi- cluster ecosystem and landscape synergetic approach, is comprehended. The public-private partnership role in water management economy sector and first of all in water management infrastructure meliorative, fishery, water transport, housing and communal services is estimated. Proceeding from the competence analysis of the Russian Federation and subjects of the Russian Federation, it is offered to create an obligatory full-fledged organizational legal realization mechanism of activities for establishing water protection zones that will demand creating procedural and procedural action registration the rights and duties exercising of imperious subjects on regional level. It is emphasized that development of the interdisciplinary protection mechanism of water resources including statute tools and actions, based on the multi-cluster space ordered
    [Show full text]
  • Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
    ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation.
    [Show full text]
  • N.I.Il`Minskii and the Christianization of the Chuvash
    Durham E-Theses Narodnost` and Obshchechelovechnost` in 19th century Russian missionary work: N.I.Il`minskii and the Christianization of the Chuvash KOLOSOVA, ALISON,RUTH How to cite: KOLOSOVA, ALISON,RUTH (2016) Narodnost` and Obshchechelovechnost` in 19th century Russian missionary work: N.I.Il`minskii and the Christianization of the Chuvash, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11403/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 1 Narodnost` and Obshchechelovechnost` in 19th century Russian missionary work: N.I.Il`minskii and the Christianization of the Chuvash PhD Thesis submitted by Alison Ruth Kolosova Material Abstract Nikolai Il`minskii, a specialist in Arabic and the Turkic languages which he taught at the Kazan Theological Academy and Kazan University from the 1840s to 1860s, became in 1872 the Director of the Kazan Teachers‟ Seminary where the first teachers were trained for native- language schools among the Turkic and Finnic peoples of the Volga-Urals and Siberia.
    [Show full text]
  • Botanica Pacifica
    Russian Academy of Sciences, Far Eastern Branch Botanical Garden-Institute botanica pacifica A journal of plant science and conservation Volume 9, No. 1 2020 VLADIVOSTOK 2020 Botanica Pacifica. A journal of plant science and conservation. 2020. 9(1): 3–52 DOI: 10.17581/bp.2020.09113 Revision of the genus Viola L. (Violaceae) in the Russian Far East with notes on adjacent territories Marc Espeut Marc Espeut ABSTRACT e-mail: [email protected] This study proposes a revision of the genus Viola L. (Violaceae) in the Russian 34, rue de l'Agriculture, 66500 Prades, Far East and adjacent regions. It is based on the taxonomic work that Becker con- France ducted on the Asian Viola (1915–1928), but also on Clausen's cytotaxonomic stud- ies (1926–1964) that laid the foundations of the genus' phylogeny. Chromosome counts, as well as phylogenetic analyses, have allowed to specify the infrageneric taxonomy and establish relationships between some taxa of American or Asian ad- Manuscript received: 09.03.2020 jacent territories. A systematic treatment based on the Biological Species Concept, Review completed: 22.04.2020 associated with genetic, cytotaxonomic, and biogeographic data, allowed many sys- Accepted for publication: 02.05.2020 tematic and nomenclatural changes, at different levels: infrageneric, specific and Published online: 07.05.2020 infraspecific. This study shows the remarkable role of the Russian Far East for the conservation and differentiation of the genus Viola species, and probably for the whole flora of the Holarctic Kingdom. Keywords: Violaceae, Viola, Russian Far East, typifications, taxonomic novelties, no- TABLE OF CONTENTS menclatural novelties Introduction ..........................................................
    [Show full text]
  • Assessment of Ecological Water Discharge from Volgograd Dam in the Volga River Downstream Area, Russia
    Journal of Agricultural Science; Vol. 10, No. 1; 2018 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Assessment of Ecological Water Discharge from Volgograd Dam in the Volga River Downstream Area, Russia I. P. Aidarov1, Yu. N. Nikolskii2 & C. Landeros-Sánchez3 1 Russian Academy of Sciences, Russia 2 Colegio de Postgraduados, Campus Montecillo, Mexico 3 Colegio de Postgraduados, Campus Veracruz, Mexico Correspondence: C. Landeros-Sánchez, Colegio de Postgraduados, Campus Veracruz, km 88.5 Carretera Federal Xalapa-Veracruz, vía Paso de Ovejas, entre Puente Jula y Paso San Juan, Tepetates, Veracruz, C.P. 91690, México. Tel: 229-201-0770. E-mail: [email protected] Received: October 18, 2017 Accepted: November 20, 2017 Online Published: December 15, 2017 doi:10.5539/jas.v10n1p56 URL: https://doi.org/10.5539/jas.v10n1p56 Abstract Water release from reservoirs to improve the environmental condition of floodplains is of great relevance. Thus, the aim of this study was to propose a method to assess ecological drawdowns from power station reservoirs. An example of its application for the Volga River downstream area is presented. The efficiency of the quantitative assessment of ecological water discharge from the reservoir of the Volgograd hydroelectric power station is analyzed and discussed in relation to the improvement of the environmental condition of the Volga-Akhtuba floodplain, which covers an area of 6.1 × 103 km2. It is shown that a decrease of spring-summer flooding worsened significantly its environmental condition, i.e. biodiversity decreased by 2-3 times, soil fertility declined by 25%, floodplain relief deformation occurred and the productivity of semi-migratory fish decreased by more than 3 times.
    [Show full text]
  • 2018 FIFA WORLD CUP RUSSIA'n' WATERWAYS
    - The 2018 FIFA World Cup will be the 21st FIFA World Cup, a quadrennial international football tournament contested by the men's national teams of the member associations of FIFA. It is scheduled to take place in Russia from 14 June to 15 July 2018,[2] 2018 FIFA WORLD CUP RUSSIA’n’WATERWAYS after the country was awarded the hosting rights on 2 December 2010. This will be the rst World Cup held in Europe since 2006; all but one of the stadium venues are in European Russia, west of the Ural Mountains to keep travel time manageable. - The nal tournament will involve 32 national teams, which include 31 teams determined through qualifying competitions and Routes from the Five Seas 14 June - 15 July 2018 the automatically quali ed host team. A total of 64 matches will be played in 12 venues located in 11 cities. The nal will take place on 15 July in Moscow at the Luzhniki Stadium. - The general visa policy of Russia will not apply to the World Cup participants and fans, who will be able to visit Russia without a visa right before and during the competition regardless of their citizenship [https://en.wikipedia.org/wiki/2018_FIFA_World_Cup]. IDWWS SECTION: Rybinsk – Moscow (433 km) Barents Sea WATERWAYS: Volga River, Rybinskoye, Ughlichskoye, Ivan’kovskoye Reservoirs, Moscow Electronic Navigation Charts for Russian Inland Waterways (RIWW) Canal, Ikshinskoye, Pestovskoye, Klyaz’minskoye Reservoirs, Moskva River 600 MOSCOW Luzhniki Arena Stadium (81.000), Spartak Arena Stadium (45.000) White Sea Finland Belomorsk [White Sea] Belomorsk – Petrozavodsk (402 km) Historic towns: Rybinsk, Ughlich, Kimry, Dubna, Dmitrov Baltic Sea Lock 13,2 White Sea – Baltic Canal, Onega Lake Small rivers: Medveditsa, Dubna, Yukhot’, Nerl’, Kimrka, 3 Helsinki 8 4,0 Shosha, Mologa, Sutka 400 402 Arkhangel’sk Towns: Seghezha, Medvezh’yegorsk, Povenets Lock 12,2 Vyborg Lakes: Vygozero, Segozero, Volozero (>60.000 lakes) 4 19 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 1 2 3 6 7 10 14 15 4,0 MOSCOW, Group stage 1/8 1/4 1/2 3 1 Estonia Petrozavodsk IDWWS SECTION: [Baltic Sea] St.
    [Show full text]
  • Load Article
    Arctic and North. 2018. No. 33 55 UDC [332.1+338.1](985)(045) DOI: 10.17238/issn2221-2698.2018.33.66 The prospects of the Northern and Arctic territories and their development within the Yenisei Siberia megaproject © Nikolay G. SHISHATSKY, Cand. Sci. (Econ.) E-mail: [email protected] Institute of Economy and Industrial Engineering of the Siberian Department of the Russian Academy of Sci- ences, Kransnoyarsk, Russia Abstract. The article considers the main prerequisites and the directions of development of Northern and Arctic areas of the Krasnoyarsk Krai based on creation of reliable local transport and power infrastructure and formation of hi-tech and competitive territorial clusters. We examine both the current (new large min- ing and processing works in the Norilsk industrial region; development of Ust-Eniseysky group of oil and gas fields; gasification of the Krasnoyarsk agglomeration with the resources of bradenhead gas of Evenkia; ren- ovation of housing and public utilities of the Norilsk agglomeration; development of the Arctic and north- ern tourism and others), and earlier considered, but rejected, projects (construction of a large hydroelectric power station on the Nizhnyaya Tunguska river; development of the Porozhinsky manganese field; place- ment of the metallurgical enterprises using the Norilsk ores near Lower Angara region; construction of the meridional Yenisei railroad and others) and their impact on the development of the region. It is shown that in new conditions it is expedient to return to consideration of these projects with the use of modern tech- nologies and organizational approaches. It means, above all, formation of the local integrated regional pro- duction systems and networks providing interaction and cooperation of the fuel and raw, processing and innovative sectors.
    [Show full text]
  • Sediment Balance of the Volga Reservoirs
    Sediment balance of the Volga reservoirs IM. A. Ziminova Abstract. The main input component of the Volga Reservoir sediment balance is the product of bank and bed abrasion (60—80 per cent of the total input). The second component is the river suspended sediment discharge (20-40 per cent}. Only 1 -S per cent of the total sediment input is derived from plankton and the higher aquatics. The main component of the output is sedimentation (60-98 per cent). Suspended sediment discharge from reservoirs varies from 2 to 40 per cent of the total output. Résumé. La plus grande partie des entrés dans le bilan de sédiments des réservoirs de la Volga se compose des produits d'affouillement des beiges et du lit, il en résulte 60-80 pour cent du total des entrées. La deuxième place est occupée par l'écoulement des matières en suspension transportées par les rivières (20-40 pour cent). Le poids qui résulte de la production du phy to plankton et des plantes aquatiques supérieures constitue 1-5 pour cent de la rentrée générale. La principale partie des sorties est la sédimentation (60-98 pour cent). Les transports solides en suspension sortant des réservoirs constituent de 2 à 40 pour cent du total des sorties. Sediment balances of reservoirs are being compiled to estimate the silting of reservoirs and to forecast the tendency of this process. These balances allow one to determine the value of and to reveal the causes of quantitive changes in the sediment discharge under the conditions of flow regulation, and to consider possible changes in the composition of sediments.
    [Show full text]
  • Stephanie Hampton Et Al. “Sixty Years of Environmental Change in the World’S Deepest Freshwater Lake—Lake Baikal, Siberia,” Global Change Biology, August 2008
    LTEU 153GS —Environmental Studies in Russia: Lake Baikal Lake Baikal in Siberia, Russia is approximately 25 million years old, the deepest and oldest lake in the world, holding more than 20% of earth’s fresh water, and providing a home to 2500 animal species and 1000 plant species. It is at risk of being irreparably harmed due to increasing and varied pollution and climate change. It has a rich history and culture for Russians and the many indigenous cultures surrounding it. It is the subject of social activism and public policy debate. Our course will explore the physical and biological characteristics of Lake Baikal, the risks to its survival, and the changes already observed in the ecosystem. We will also explore its cultural significance in the arts, literature, and religion, as well as political, historical, and economic issues related to it. Class will be run largely as a seminar. Each student will be expected to contribute based on their own expertise, life experience, and active learning. As a final project, student groups will draw on their own research and personal experiences with Lake Baikal to form policy proposals and a media campaign supporting them. Week 1: Biology and Geology of Lake Baikal Moscow: Meet with Environmental Group, Visit Zaryadye Park (Urban Development) Irkutsk Local Field Trip: Baikal Limnological Museum—forms of life in and around Lake Baikal Week 2: Threats to the Baikal Environment Local Field Trip: Irkutsk Dump, Baikal Interactive Center/Service Work Traveling Field Trip: Balagansk/Angara River, Anthropogenic Effects on Environment Weeks 3/4: Economics and Politics of Lake Baikal, Lake Baikal in Literature and Culture Traveling Field Trip: Olkhon Island/Service Project, Service Work on Great Baikal Trail/Camping Week 5: Comparison of Environmental Issues and Policies in Russian Urban Centers St.
    [Show full text]
  • Subject of the Russian Federation)
    How to use the Atlas The Atlas has two map sections The Main Section shows the location of Russia’s intact forest landscapes. The Thematic Section shows their tree species composition in two different ways. The legend is placed at the beginning of each set of maps. If you are looking for an area near a town or village Go to the Index on page 153 and find the alphabetical list of settlements by English name. The Cyrillic name is also given along with the map page number and coordinates (latitude and longitude) where it can be found. Capitals of regions and districts (raiony) are listed along with many other settlements, but only in the vicinity of intact forest landscapes. The reader should not expect to see a city like Moscow listed. Villages that are insufficiently known or very small are not listed and appear on the map only as nameless dots. If you are looking for an administrative region Go to the Index on page 185 and find the list of administrative regions. The numbers refer to the map on the inside back cover. Having found the region on this map, the reader will know which index map to use to search further. If you are looking for the big picture Go to the overview map on page 35. This map shows all of Russia’s Intact Forest Landscapes, along with the borders and Roman numerals of the five index maps. If you are looking for a certain part of Russia Find the appropriate index map. These show the borders of the detailed maps for different parts of the country.
    [Show full text]