Reproductive Organs Basics– Differences Between Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Embryology and Development
BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation. -
Human Pluripotent Stem Cells As a Model of Trophoblast Differentiation in Both Normal Development and Disease
Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease Mariko Horiia,b,1, Yingchun Lia,b,1, Anna K. Wakelanda,b,1, Donald P. Pizzoa, Katharine K. Nelsona,b, Karen Sabatinib,c, Louise Chang Laurentb,c, Ying Liud,e,f, and Mana M. Parasta,b,2 aDepartment of Pathology, University of California, San Diego, La Jolla, CA 92093; bSanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093; cDepartment of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093; dDepartment of Neurosurgery, Center for Stem Cell and Regenerative Medicine, University of Texas Health Sciences Center, Houston, TX 77030; eThe Senator Lloyd and B. A. Bentsen Center for Stroke Research, University of Texas Health Sciences Center, Houston, TX 77030; and fThe Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Sciences Center, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri–Columbia, Columbia, MO, and approved May 25, 2016 (received for review March 24, 2016) Trophoblast is the primary epithelial cell type in the placenta, a Elf5 (Ets domain transcription factor) and Eomes (Eomeso- transient organ required for proper fetal growth and develop- dermin), also have been shown to be required for maintenance of ment. Different trophoblast subtypes are responsible for gas/nutrient the TSC fate in the mouse (8, 9). exchange (syncytiotrophoblasts, STBs) and invasion and maternal Significantly less is known about TE specification and the TSC vascular remodeling (extravillous trophoblasts, EVTs). Studies of niche in the human embryo (10, 11). -
Adhesive and Degradative Properties of Human Placental Cytotrophoblast Cells in Vitro Susan J
Adhesive and Degradative Properties of Human Placental Cytotrophoblast Cells In Vitro Susan J. Fisher, Tian-yi Cui, Li Zhang, Lynn Hartman, Kim Grahl, Zhang Guo-Yang, John Tarpey, and Caroline H. Damsky Departments of Stomatology, Anatomy, and Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143 Abstract. Human fetal development depends on the ponents into the medium. No similar degradative ac- embryo rapidly gaining access to the maternal circula- tivity was observed when second or third trimester tion. The trophoblast cells that form the fetal portion cytotrophoblast cells, first trimester human placental of the human placenta have solved this problem by fibroblasts, or the human choriocarcinoma cell lines transiently exhibiting certain tumor-like properties. BeWo and JAR were cultured on radiolabeled matrices. Thus, during early pregnancy fetal cytotrophoblast To begin to understand the biochemical basis of this cells invade the uterus and its arterial network. This degradative behavior, the substrate gel technique was process peaks during the twelfth week of pregnancy used to analyze the cell-associated and secreted pro- and declines rapidly thereafter, suggesting that the teinase activities expressed by early, mid, and late highly specialized, invasive behavior of the cytotropho- gestation cytotrophoblasts. Several gelatin-degrading blast cells is closely regulated. Since little is known proteinases were uniquely expressed by early gesta- about the actual mechanisms involved, we developed tion, invasive cytotrophoblasts, and all these activities an isolation procedure for cytotrophoblasts from could be abolished by inhibitors of metalloproteinases. placentas of different gestational ages to study their By early second trimester, the time when cytotropho- adhesive and invasive properties in vitro. -
What Is the Role of the Placenta—Does It Protect Against Or Is It a Target for Insult?
Teratology Primer, 3rd Edition www.teratology.org/primer What Is the Role of the Placenta—Does It Protect Against or Is It a Target for Insult? Richard K. Miller University of Rochester School of Medicine & Dentistry Rochester, New York The placenta is not just a barrier but has many functions that are vital to the health of the embryo/fetus. The placenta is the anchor, the conduit, and the controller of pregnancy—and it can also be a target for toxicant action. The placenta encompasses not only the chorioallantoic placenta but all of its extraembryonic membranes (chorion/amnion) and the yolk sac. (Figure 1). The placenta and its membranes secure the embryo and fetus to the decidua (uterine lining) and release a variety of steroid and protein hormones that characterize the physiology of the pregnant female. Figure 1. Placental Structure in the Mouse. Figures depict early development of the mouse conceptus at embryonic days (E3.5, E7.5, E12.5). In the fetus, the visceral yolk sac (vYS) inverts and remains active throughout the entire gestation providing for transfer of selective large molecules, e.g., immunoglobulins IgG and vitamin B12. Abbreviations: Al, allantois; Am, amnion; Ch, chorion; Dec, decidua; Emb, embryo; Epc, ectoplacental cone; ICM, inner cell mass; Lab, Labyrinth; pYS, parietal yolk sac; SpT, spongiotrophoblast; TCG, trophoblast giant cell; Umb Cord, umbilical cord; vYS, visceral yolk sac; C-TGC, maternal blood canal trophoblast giant cell; P-TGC, parietal trophoblast giant cell; S-TGC, sinusoidal trophoblast giant cell; SpA-TGC, Spiral artery-associated trophoblast giant cell; Cyan-trophectoderm and trophoblast lineage, Black- inner cell mass and embryonic ectoderm; Gray -endoderm, Red-maternal vasculature, Purple-mesoderm, Yellow- decidua, Pink-fetal blood vessels in labyrinth. -
NUMB and Syncytiotrophoblast Development and Function: Investigation Using Bewo Choriocarcinoma Cells by Julie Carey This Thesis
NUMB and Syncytiotrophoblast Development and Function: Investigation Using BeWo Choriocarcinoma Cells By Julie Carey This thesis is submitted as a partial fulfillment of the M.Sc. program in Cellular and Molecular Medicine Faculty of Medicine, University of Ottawa May, 2012 © Julie Carey, Ottawa, Canada, 2012 ABSTRACT The role of NUMB, a protein important for cellular differentiation and endocytosis in non-placental cells, was investigated in syncytiotrophoblast development and function in the human placenta. The BeWo choriocarcinoma cell line was used as a model for villous cytotrophoblast cells and syncytiotrophoblast to investigate NUMB’s involvement in differentiation and epidermal growth factor receptor (EGFR) endocytosis. NUMB isoforms 1 and 3 were found to be the predominant isoforms and were upregulated following forskolin-induced differentiation. Overexpression of NUMB isoforms 1 and 3 did not mediate differentiation or EGFR signaling. Immunofluorescence analysis revealed that NUMB colocalized with EGFR at perinuclear late endosomes and lysosomes following EGF stimulation. We have demonstrated for the first time that NUMB isoforms 1 and 3 are expressed in BeWo cells, are upregulated in forskolin- differentiated BeWo cells and are involved in ligand-dependent EGFR endocytosis in BeWo cells. ii TABLE OF CONTENTS ABSTRACT …………………………………………………………………………….. ii LIST OF TABLES ……………………………………………………………………... v LIST OF FIGURES ………………………………………………………………...…. vi LIST OF ABBREVIATIONS ………………………………………………...……… vii ACKNOWLEDGEMENTS ……………………………………………...…..………. -
From Trophoblast to Human Placenta
From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst. -
The Placenta: Transcriptional, Epigenetic, and Physiological Integration During Development
The placenta: transcriptional, epigenetic, and physiological integration during development Emin Maltepe, … , Anna I. Bakardjiev, Susan J. Fisher J Clin Invest. 2010;120(4):1016-1025. https://doi.org/10.1172/JCI41211. Review Series The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (trophoblasts) and synthesize current knowledge about how they interact to generate a functional placenta. Developing an understanding of these pathways contributes to an improvement of our models for studying trophoblast biology and sheds light on the etiology of pregnancy complications and the in utero programming of adult diseases. Find the latest version: https://jci.me/41211/pdf Review series The placenta: transcriptional, epigenetic, and physiological integration during development Emin Maltepe,1,2,3,4 Anna I. Bakardjiev,1,2,5 and Susan J. Fisher2,3,4,6,7 1Department of Pediatrics, 2Biomedical Sciences Program, 3Center for Reproductive Sciences and the Department of Obstetrics, Gynecology and Reproductive Sciences, 4Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, 5Program in Microbial Pathogenesis and Host Defense, 6Department of Anatomy, and 7Human Embryonic Stem Cell Program, University of California, San Francisco. The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (tro- phoblasts) and synthesize current knowledge about how they interact to generate a functional placenta. -
Mechanisms of Human Embryo Development: from Cell Fate to Tissue Shape and Back Marta N
© 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev190629. doi:10.1242/dev.190629 REVIEW Mechanisms of human embryo development: from cell fate to tissue shape and back Marta N. Shahbazi* ABSTRACT activated ion channels (Coste et al., 2010), mechanosensitive Gene regulatory networks and tissue morphogenetic events drive the transcription factors (Dupont et al., 2011) or directly by the nucleus emergence of shape and function: the pillars of embryo development. (Kirby and Lammerding, 2018). Once sensed, mechanical cues – Although model systems offer a window into the molecular biology of are transduced into biochemical signals a process known as cell fate and tissue shape, mechanistic studies of our own mechanotransduction (Chan et al., 2017). The conversion of development have so far been technically and ethically challenging. mechanical cues into biochemical signals leads to changes in However, recent technical developments provide the tools to gene expression and protein activity that control cell behaviour, cell describe, manipulate and mimic human embryos in a dish, thus fate specification and tissue patterning. opening a new avenue to exploring human development. Here, I Current consensus focuses on two main ideas to explain the discuss the evidence that supports a role for the crosstalk between emergence of tissue patterns in response to morphogen (see Glossary, ‘ ’ cell fate and tissue shape during early human embryogenesis. This is Box1)signals.Inthe positional information model (Wolpert, a critical developmental period, when the body plan is laid out and 1969), the concentration of a morphogen serves as a coordinate of the many pregnancies fail. Dissecting the basic mechanisms that position of a cell within a tissue. -
Revisedental.Com Implantation
Embryology Sumamry This lesson will cover fertilisation, implantation, gastrulation and neurulation. The first 4 weeks of embryology. Pregnancy is split into three trimesters. Semesters one and two contribute to the embryonic period and semester three becomes the fetal period. The first of these trimesters is a critical time period, because this is when all the main organ systems begin to develop. The second trimester is when we start to look more human and our organ systems are near complete ready to move into the third trimester, which shows rapid fetal growth and organ function. This process takes between 38-40 weeks, which is when birth occurs. Week 1: Key Words: Fertilisation Zygote Cleavage Blastomere Morula Blastocyst Trophoblast EmbryoblastsReviseDental.com Implantation Cell actions: Proliferate, Migrate and Differentiate. Fertilisation: The optimum time for fertilisation to occur is between 12-24hrs after ovulation (when the secondary oocyst leaves the ovary). However, due to the ability of sperm being able to remain viable for 48hrs, there is a 3 day window around the time of ovulation for fertilisation to take place. Sperm and ova are haploid cells. This means they have half the amount of chromosomes of a human cell. Therefore, on fusion (syngamy) a diploid cell is created, now known as a zygote. The Zygote now has the correct number of chromosomes: 46. Diagram schematicReviseDental.com of a sperm and ova The sperm cells are specially equipped to enter the ova, having acrosome enzymes to penetrate the cell wall and a powerful flagella (tail) for motility. On entrance, to prevent polyspermy (multiple sperm entering), the ova cell wall depolarises alongside deactivation of cell receptor, making the ova's zona pellucida impenetrable. -
Early Embryonic Development Till Gastrulation (Humans)
Gargi College Subject: Comparative Anatomy and Developmental Biology Class: Life Sciences 2 SEM Teacher: Dr Swati Bajaj Date: 17/3/2020 Time: 2:00 pm to 3:00 pm EARLY EMBRYONIC DEVELOPMENT TILL GASTRULATION (HUMANS) CLEAVAGE: Cleavage in mammalian eggs are among the slowest in the animal kingdom, taking place some 12-24 hours apart. The first cleavage occurs along the journey of the embryo from oviduct toward the uterus. Several features distinguish mammalian cleavage: 1. Rotational cleavage: the first cleavage is normal meridional division; however, in the second cleavage, one of the two blastomeres divides meridionally and the other divides equatorially. 2. Mammalian blastomeres do not all divide at the same time. Thus the embryo frequently contains odd numbers of cells. 3. The mammalian genome is activated during early cleavage and zygotically transcribed proteins are necessary for cleavage and development. (In humans, the zygotic genes are activated around 8 cell stage) 4. Compaction: Until the eight-cell stage, they form a loosely arranged clump. Following the third cleavage, cell adhesion proteins such as E-cadherin become expressed, and the blastomeres huddle together and form a compact ball of cells. Blatocyst: The descendents of the large group of external cells of Morula become trophoblast (trophoblast produce no embryonic structure but rather form tissues of chorion, extraembryonic membrane and portion of placenta) whereas the small group internal cells give rise to Inner Cell mass (ICM), (which will give rise to embryo proper). During the process of cavitation, the trophoblast cells secrete fluid into the Morula to create blastocoel. As the blastocoel expands, the inner cell mass become positioned on one side of the ring of trophoblast cells, resulting in the distinctive mammalian blastocyst. -
Single-Cell Transcriptomics of the Human Placenta: Inferring the Cell Communication Network of the Maternal-Fetal Interface
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Research Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface Mihaela Pavličev,1,2 Günter P. Wagner,3,4,5,6 Arun Rajendra Chavan,3 Kathryn Owens,7 Jamie Maziarz,3 Caitlin Dunn-Fletcher,2 Suhas G. Kallapur,1,2 Louis Muglia,1,2 and Helen Jones7,8 1Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA; 3Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA; 4Yale Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA; 5Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, Yale University, New Haven, Connecticut 06510, USA; 6Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA; 7Center for Fetal Cellular and Molecular Therapy, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA; 8Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA Organismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome by assessing the gene expression of receptor-ligand pairs across cell types. -
Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J
Journal für Reproduktionsmedizin und Endokrinologie – Journal of Reproductive Medicine and Endocrinology – Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization Gauster M, Huppertz B J. Reproduktionsmed. Endokrinol 2008; 5 (2), 76-82 www.kup.at/repromedizin Online-Datenbank mit Autoren- und Stichwortsuche Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz FERRING-Symposium digitaler DVR 2021 Mission possible – personalisierte Medizin in der Reproduktionsmedizin Was kann die personalisierte Kinderwunschbehandlung in der Praxis leisten? Freuen Sie sich auf eine spannende Diskussion auf Basis aktueller Studiendaten. SAVE THE DATE 02.10.2021 Programm 12.30 – 13.20Uhr Chair: Prof. Dr. med. univ. Georg Griesinger, M.Sc. 12:30 Begrüßung Prof. Dr. med. univ. Georg Griesinger, M.Sc. & Dr. Thomas Leiers 12:35 Sind Sie bereit für die nächste Generation rFSH? Im Gespräch Prof. Dr. med. univ. Georg Griesinger, Dr. med. David S. Sauer, Dr. med. Annette Bachmann 13:05 Die smarte Erfolgsformel: Value Based Healthcare Bianca Koens 13:15 Verleihung Frederik Paulsen Preis 2021 Wir freuen uns auf Sie! Fusion of Cytotrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization M. Gauster, B. Huppertz Human placental villi are covered by a characteristic epithelial-like layer. It consists of mononucleated cytotrophoblasts and an overlying syncytiotrophoblast layer both in contact to the trophoblastic basement membrane. The syncytiotrophoblast mostly lacks DNA replication and seems to transcribe only barely mRNA.