Animal Relationships Metazoa = Animalia Eumetazoa Bilateria

Total Page:16

File Type:pdf, Size:1020Kb

Animal Relationships Metazoa = Animalia Eumetazoa Bilateria On the move, and Land Ho! 1. Enter answer text... Animal relationships Metazoa = Animalia Eumetazoa Bilateria Porifera Radiata (sponges) Cnidaria Themes: 1) Mobility 2) Land (again) Kingdom Animalia Multicellular, eukaryotic, and heterotrophic Porifera - Examples of early animals ! No true tissues ! Only a few cell types "Some totipotent ! Filter feeders "Full of holes " Create current with choanocytes See 32.10 #Very similar to choanoflagellates! Animal relationships Metazoa = Animalia Eumetazoa Bilateria Porifera Radiata (sponges) Cnidaria Themes: 1) Mobility 2) Land (again) Kingdom Animalia Multicellular, eukaryotic, and heterotrophic Eumetazoa ! Diploblastic ! Two cell layers "Endoderm (inside) "Ectoderm (outside) ! E.g. Cnidarians "Jellyfish, anemones, corals See Fig. 32.2 Eumetazoa ! Diploblastic ! Two cell layers "Endoderm (inside) "Ectoderm (outside) ! E.g. Cnidarians "Jellyfish, anemones, corals Eumetazoa ! Diploblastic ! Two cell layers "Endoderm (inside) "Ectoderm (outside) ! Gastrulation ! Cnidarians "Jellyfish, anemones, corals Cnidaria - Diploblastic animals ! Have a nervous system! ! Mobility! ! Radially symmetrical "Not very directional See Fig. 32.7 Animal relationships Metazoa = Animalia Eumetazoa Bilateria "Porifera" "Radiata"Cnidaria (sponges) Eumetazoa Gastrulation Nervous system, synpases Radial Symmetry Animal relationships The ctrouble with Ctenophores ! Beautiful, and way cool ! Superficially similar to Cnidarians ! Quite complicated, in some ways like Bilaterians Metazoa = Animalia ! Have been a problem Eumetazoa Bilateria phylogenetically for a long "Porifera" Cnidaria"Radiata" time! (sponges) Eumetazoa Gastrulation Nervous system, synpases Radial Symmetry Animal relationships The ctrouble with Ctenophores ! No buts about it, the butthole is one of the finest innovations in the past 540 million years of animal evolution. The first animals that arose seem to have literally had potty mouths: Their modern-day descendants, such as sea sponges, sea anemones, and jellyfish, all lack an anus and must eat and excrete through the same hole. Once an independent exit evolved, however, animals diversified into the majority of species alive today, ranging from earthworms to humans. Bilateria - Origins and diversification ! The Cambrian Explosion ! Most modern phyla appear in only 40 million years Animal relationships Metazoa = Animalia Eumetazoa Bilateria "Porifera" "Radiata"Cnidaria (sponges) Eumetazoa Gastrulation Nervous system, synpases Radial Symmetry Bilateral symmetry and Cephalization ! Cephalization "Sense organs in front Bilateral symmetry and Cephalization !Cephalization !Bilateral symmetry "Direction! Two Great Branches of the Bilaterian Tree ! Protostomes "E.g. Annelids, Arthropods, Molluscs ! Deuterostomes "E.g. Chordates Protostomes: Annelida ! Segmentation "Can operate segments independently "Redundancy See 46.18 Protostomes: Arthropoda ! Extremely diverse "Aquatic and terrestrial ! Segmentation "Jointed Skeleton #External = Exoskeleton #Jointed skeleton convergent with vertebrates "Redundancy and Serial Homology! #And extreme specialization! Two Great Branches of Bilaterian Tree ! Protostomes " Lophotrochozoa # E.g. Annelids " Ecdysozoa # E.g. Arthropods ! Deuterostomes " E.g. Chordates Chordates Its a long way from Amphioxus Chordate Characteristics ! Notochord Unity of Plan "Structural support ! Dorsal Hollow nerve cord 33.5b "Elsewhere ventral ! Pharyngeal slits "Feeding, then breathing ! Muscular Tail "Propulsion Chordates and Activity Level ! From ancestors with a relatively low metabolic rate, chordates evolve a highly active lifestyle!! ! Parallels among the Protostomes Vertebrate Origins Urochordata Cephalochordata Vertebrata = Ascidian = Amphioxus ? Amphioxus Our baseline for vertebrates ! Like vertebrates "Segmented "Can be fast ! But, lack "Well-developed brain "Heart "Gills/lungs ! And is small Vertebrate Origins ! Great sense organs "Eyes, nose, hearing "(Protostomes too!) Vertebrate Origins ! Great sense organs "Eyes, nose, hearing "(Protostomes too!) ! Jointed skeleton "(Arthropods too!) "e.g.Vertebral column Vertebrate Origins ! Great sense organs "Eyes, nose, hearing "(Protostomes too!) ! Jointed skeleton "Vertebral column "(Arthropods too!) ! Extreme cephalization "(Some protostomes, too!) Vertebrate Relationships Gnathostomata Tetrapoda "Agnatha" "Fishes" Amphibians Amniotes Amniotic egg Jointed limbs Jaws Vertebrate Relationships See 34.14 ! Agnatha "No Jaws ! Gnathostomata "Jaws #Evolve from gill arches #More effective feeding #Supports higher metabolism Sharks and bony fishes ! Extremely successful in water "Most vertebrates are bony fishes "Wide range of habitats "No major invasions of land Tetrapoda ! Amphibians, Reptiles, Birds, and Mammals ! Very successful on land ! Jointed appendages "More effective movement "(Arthropods too!) ! Amphibians still rely on water for reproduction "The bryophytes of the vertebrate world Amniotes ! Much more successful on land than amphibians "Reptiles "Birds "Mammals ! Have dry scaly skin to reduce water loss (remember the plant cuticle?) Amniotes ! Much more successful on land than amphibians "Reptiles "Birds "Mammals ! Amniotic egg Amniotes ! Amniotic egg "Protection of embryo from environment Fig. 34.16 #Amnion "Storage of wastes #Allantois "Gas exchange #Chorion Reptiles ! Paraphyletic "Some closer to birds (e.g. croc) or mammals than to other reptiles ! Dominated land for a very long time "Overshadowed mammals for 140 million years! Birds and Mammals Independently evolved a high metabolic rate! ! High body temperature "Insulation - feathers or fur ! Very efficient locomotion ! Very efficient respiration ! Four chamber heart "Complete separation of high/low oxygen blood Birds and Mammals Independently evolved a high metabolic rate! Lizards Turtles Snakes Crocodiles Birds Mammals 4-chamber heart Warm blood ! respiration ! circulation Amniotic egg ! locomotion Birds ! Flight "Feathers ! Archaeopteryx intermediate in many ways "Teeth "Claws "Long, bony tail Mammals ! Arose about 220 mya ! Primitively, laid eggs "Two species still do! #Platypus, echidna ! Derived similarities include "Hair "Lactation "Three-bone middle ear Summary ! Sponges: No true tissues ! Bilateria: Bilateral symmetry, cephalization ! Protostomes vs. Deuterostomes " Trend towards high energy lifestyle ! Chordate characteristics "Notochord, Dorsal hollow nerve cord, Pharyngeal slits, tail ! Gnathostomes have jaws "More efficient feeding Summary - continued ! Tetrapods have jointed limbs "Better locomotion on land ! Amniotes have an amniotic egg "More resistant to drying ! Birds and mammals have independently evolved many features related to a very high metabolic rate "Effective respiration, circulation, locomotion, high body temperature, insulation.
Recommended publications
  • Flatworms Phylum Platyhelminthes
    Flatworms Phylum Platyhelminthes The flatworms include more than 13,000 species of free-living and parasitic species.There are 3 classes of flat- worms, the planarians, flukes and tapeworms. General Physical Traits (Anatomy): Flatworms are bilaterally symmetrical. This means that they can only be cut them length-wise to produce two mirror-image halves. They have a distinct right and left half. This is differ- ent from radially symmetrical animals, like the anemones, which can be cut anywhere top to bottom to get two similar halves. Flatworms have 3 tissue layers, compared to the 2 layers in sponges and cnidarians (jellyfishes, anemones and corals). They also have only one opening for food to enter and waste to leave, like the sponges and cnidarians. This is called a “sac” body plan. Planarian (class Tubellaria) Habitat: They live mostly in saltwater (marine) habitats, but are also found in freshwater. Habits: They are free-living flatworms (not parasites). Physical Traits (Anatomy): Planarians are small - less than a centimeter long. They have a head, brain and sense organs. This is called “cephalization.” The sense organs – called eyespots – look like eyes and are sensitive to light changes, but are not like human eyes. They are made up of simple nerve cells that respond to stimuli, like light. When many nerve cells are gathered in one place, they are called a “ganglion,” so the two eyespots are actually ganglia. They also have points on either side of the head that look a bit like ears, called “sensory lobes” or auricles. They do not hear, but can sense food.
    [Show full text]
  • Phylum Chordata
    Phylum Chordata 48,000 species very diverse phylum but still more unity in major characteristics than in most other phyla most advanced phylum of animal kingdom one to which we belong along with fish, amphibians reptiles, birds and other mammals some of the largest or most massive animals true coelom 4 major identifying characteristics: 1. Notochord flexible rodlike structure enclosed by a fibrous sheath extends the length of the body in larva and/or adult provides basic support and serves as main axis for muscle attachments to permit “fishlike” undulatory movements first part of skeleton to form in embryo in primitive chordates the notochord persists through life Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 1 in most chordates the notochord is replaced by a vertebral column of bone remnants of the notochord remain as “intervertebral discs” 2. Dorsal tubular nerve cord in most invert groups; nerve cord is ventral & paired in chordates the nerve cord is a single dorsal hollow nerve cord front end usually enlarged to form brain 3. Pharyngeal (gill) slits slit-like opening sleading from throat to outside first evolved as a filter feeding apparatus still used by some to filter water for food in others as gills in some groups they are only found in embryo and lost as adults 4. endostyle or thyroid gland specific kind of tissue found only in chordates was originally part of the feeding apparatus endostyle secretes mucus and traps food inside the pharyngeal cavity eg. lamprey larva in most chordates the same tissue has become an endocrine Animals: Chordates & Introduction to Vertebrates; Ziser Lecture Notes, 2006 2 gland in the neck region that helps control metabolism 5.
    [Show full text]
  • Xenacoelomorpha's Significance for Understanding Bilaterian Evolution
    Available online at www.sciencedirect.com ScienceDirect Xenacoelomorpha’s significance for understanding bilaterian evolution Andreas Hejnol and Kevin Pang The Xenacoelomorpha, with its phylogenetic position as sister biology models are the fruitfly Drosophila melanogaster and group of the Nephrozoa (Protostomia + Deuterostomia), plays the nematode Caenorhabditis elegans, in which basic prin- a key-role in understanding the evolution of bilaterian cell types ciples of developmental processes have been studied in and organ systems. Current studies of the morphological and great detail. It might be because the field of evolutionary developmental diversity of this group allow us to trace the developmental biology — EvoDevo — has its origin in evolution of different organ systems within the group and to developmental biology and not evolutionary biology that reconstruct characters of the most recent common ancestor of species under investigation are often called ‘model spe- Xenacoelomorpha. The disparity of the clade shows that there cies’. Criteria for selected representative species are cannot be a single xenacoelomorph ‘model’ species and primarily the ease of access to collected material and strategic sampling is essential for understanding the evolution their ability to be cultivated in the lab [1]. In some cases, of major traits. With this strategy, fundamental insights into the a supposedly larger number of ancestral characters or a evolution of molecular mechanisms and their role in shaping dominant role in ecosystems have played an additional animal organ systems can be expected in the near future. role in selecting model species. These arguments were Address used to attract sufficient funding for genome sequencing Sars International Centre for Marine Molecular Biology, University of and developmental studies that are cost-intensive inves- Bergen, Thormøhlensgate 55, 5008 Bergen, Norway tigations.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • The NEURONS and NEURAL SYSTEM: a 21St CENTURY PARADIGM
    The NEURONS and NEURAL SYSTEM: a 21st CENTURY PARADIGM This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. A Table of Contents and an index are located at the end of this paper. A few citations have yet to be defined and are indicated by “xxx.” James T. Fulton Neural Concepts [email protected] July 19, 2015 Copyright 2011 James T. Fulton 2 Neurons & the Nervous System 4 The Architectures of Neural Systems1 [xxx review cogn computation paper and incorporate into this chapter ] [xxx expand section 4.4.4 as a key area of importance ] [xxx Text and semantics needs a lot of work ] Don’t believe everything you think. Anonymous bumper sticker You must not fool yourself, and you are the easiest person to fool Richard Feynman I am never content until I have constructed a model of what I am studying. If I succeed in making one, I understand; otherwise, I do not. William Thomson (Lord Kelvin) It is the models that tell us whether we understand a process and where the uncertainties remain. Bridgeman, 2000 4.1 Background [xxx chapter is a hodge-podge at this time 29 Aug 11 ] The animal kingdom shares a common neurological architecture that is ramified in a specific species in accordance with its station in the phylogenic tree and the ecological domain. This ramification includes not only replication of existing features but further augmentation of the system using new and/or modified features.
    [Show full text]
  • Echinoderms for Dummies Colwyn Sleep Echinoderm Classification and Examples
    ECHINODERMS FOR DUMMIES COLWYN SLEEP ECHINODERM CLASSIFICATION AND EXAMPLES What exactly is an Echinoderm? Echinoderms (or “Echinodermata”) are a group of animals which exist only in a marine (ocean) environment. Their name comes from the Greek word for "spiny skin". They inhabit a diverse range of marine habitats and are found on the sea floor from the intertidal zone to great ocean depths. In the following slides we will explore echinoderms and look into their body systems and structures more closely. A FEW EXAMPLES OF ECHINODERMS Sea star Kingdom: Animalia Phylum: Echinodermata Class: Asteroidea Feather Star Kingdom: Animalia Phylum: Echinodermata Subphylum: Crinozoa Class: Crinoidea Probably one of the best known echinoderms This lesser-known star, the feather star gains is the easily recognized sea star. The its name from its featherlike arms, which it echinoderm phylum contains many more uses to swim through the water. Like all species, in fact there are around 7000 known echinoderms, they are “Deuterostomes.” echinoderms. Later, we will investigate the This means that during their embryonic sea star and it’s classification as an development the first embryonic opening echinoderm in greater detail. becomes the anus and the second becomes the mouth. Because of this, biologists believe that echinoderms are more evolutionarily advanced than some of the other animals. A FEW MORE… Sea cucumber Kingdom: Animalia Phylum: Echinodermata Class: Holothuroidea Sea Urchin Kingdom: Animalia Phylum: Echinodermata Class: Echinoidea Related to Jabba the Hutt in appearance Like other echinoderms, the sea urchin has only, the sea cucumber is actually another radial symmetry. Its pointed spines offer example of an echinoderm.
    [Show full text]
  • Introduction to Phylum Chordata
    Unifying Themes 1. Chordate evolution is a history of innovations that is built upon major invertebrate traits •bilateral symmetry •cephalization •segmentation •coelom or "gut" tube 2. Chordate evolution is marked by physical and behavioral specializations • For example the forelimb of mammals has a wide range of structural variation, specialized by natural selection 3. Evolutionary innovations and specializations led to adaptive radiations - the development of a variety of forms from a single ancestral group Characteristics of the Chordates 1. Notochord 2. dorsal hollow nerve cord 3. pharyngeal gill slits 4. postanal tail 5. endostyle Characteristics of the Chordates Notochord •stiff, flexible rod, provides internal support • Remains throughout the life of most invertebrate chordates • only in the embryos of vertebrate chordates Characteristics of the Chordates cont. Dorsal Hollow Nerve Cord (Spinal Cord) •fluid-filled tube of nerve tissue, runs the length of the animal, just dorsal to the notochord • Present in chordates throughout embryonic and adult life Characteristics of the Chordates cont. Pharyngeal gill slits • Pairs of opening through the pharynx • Invertebrate chordates use them to filter food •In fishes the gill sits develop into true gills • In reptiles, birds, and mammals the gill slits are vestiges (occurring only in the embryo) Characteristics of the Chordates cont. Endostyle • mucous secreting structure found in the pharynx floor (traps small food particles) Characteristics of the Chordates cont. Postanal Tail • works with muscles (myomeres) & notochord to provide motility & stability • Aids in propulsion in nonvertebrates & fish but vestigial in later lineages SubPhylum Urochordata Ex: tunicates or sea squirts • Sessile as adults, but motile during the larval stages • Possess all 5 chordate characteristics as larvae • Settle head first on hard substrates and undergo a dramatic metamorphosis • tail, notochord, muscle segments, and nerve cord disappear SubPhylum Urochordata cont.
    [Show full text]
  • Carbonic Anhydrases: an Ancient Tool in Calcareous Sponge Biomineralization
    fgene-12-624533 March 30, 2021 Time: 13:30 # 1 BRIEF RESEARCH REPORT published: 07 April 2021 doi: 10.3389/fgene.2021.624533 Carbonic Anhydrases: An Ancient Tool in Calcareous Sponge Biomineralization Oliver Voigt1*, Benedetta Fradusco1, Carolin Gut1, Charalampos Kevrekidis1, Sergio Vargas1 and Gert Wörheide1,2,3 1 Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany, 2 GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany, 3 SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany Enzymes of the a-carbonic anhydrase gene family (CAs) are essential for the deposition of calcium carbonate biominerals. In calcareous sponges (phylum Porifera, class Calcarea), specific CAs are involved in the formation of calcite spicules, a unique trait and synapomorphy of this class. However, detailed studies on the CA repertoire of calcareous sponges exist for only two species of one of the two Calcarea subclasses, the Calcaronea. The CA repertoire of the second subclass, the Calcinea, has not been investigated so far, leaving a considerable gap in our knowledge about this Edited by: Melanie Debiais-Thibaud, gene family in Calcarea. Here, using transcriptomic analysis, phylogenetics, and in situ Université de Montpellier, France hybridization, we study the CA repertoire of four additional species of calcareous Reviewed by: sponges, including three from the previously unsampled subclass Calcinea. Our data Helena Cetkovi´ c,´ Rudjer Boskovic Institute, Croatia indicate that the last common ancestor of Calcarea had four ancestral CAs with defined Ana Riesgo, subcellular localizations and functions (mitochondrial/cytosolic, membrane-bound, and Natural History Museum, secreted non-catalytic). The evolution of membrane-bound and secreted CAs involved United Kingdom gene duplications and losses, whereas mitochondrial/cytosolic and non-catalytic CAs *Correspondence: Oliver Voigt are evidently orthologous genes.
    [Show full text]
  • S I Section 4
    3/31/2011 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Porifera Ecdysozoa Deuterostomia Lophotrochozoa Cnidaria and Ctenophora Cnidaria and Protostomia SSiection 4 Radiata Bilateria Professor Donald McFarlane Parazoa Eumetazoa Lecture 13 Invertebrates: Parazoa, Radiata, and Lophotrochozoa Ancestral colonial choanoflagellate 2 Traditional classification based on Parazoa – Phylum Porifera body plans Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Parazoa 4 main morphological and developmental Sponges features used Loosely organized and lack Porifera Ecdysozoa Cnidaria and Ctenophora tissues euterostomia photrochozoa D 1. o Presence or absence of different tissue L Multicellular with several types of types Protostomia cells 2. Type of body symmetry Radiata Bilateria 8,000 species, mostly marine Parazoa Eumetazoa 3. Presence or absence of a true body No apparent symmetry cavity Ancestral colonial Adults sessile, larvae free- choanoflagellate 4. Patterns of embryonic development swimming 3 4 1 3/31/2011 Water drawn through pores (ostia) into spongocoel Flows out through osculum Reproduce Choanocytes line spongocoel Sexually Most hermapppgggphrodites producing eggs and sperm Trap and eat small particles and plankton Gametes are derived from amoebocytes or Mesohyl between choanocytes and choanocytes epithelial cells Asexually Amoebocytes absorb food from choanocytes, Small fragment or bud may detach and form a new digest it, and carry
    [Show full text]
  • Brain-Size Evolution and Sociality in Carnivora
    Brain-size evolution and sociality in Carnivora John A. Finarellia,b,1 and John J. Flynnc aDepartment of Geological Sciences, University of Michigan, 2534 C.C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; bMuseum of Paleontology, University of Michigan, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109; and cDivision of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved April 22, 2009 (received for review February 16, 2009) Increased encephalization, or larger brain volume relative to body develop a comprehensive view of the evolutionary history of mass, is a repeated theme in vertebrate evolution. Here we present encephalization across 289 terrestrial species (including 125 an extensive sampling of relative brain sizes in fossil and extant extinct species) of Carnivora, providing an extensive sampling of taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, fossil and living taxa for both major subclades: Caniformia and and their relatives). By using Akaike Information Criterion model Feliformia. selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific Results evolutionary transformations in encephalization allometries. Akaike Information Criterion (AIC) model selection recovered These evolutionary transformations include multiple independent 4 optimal models (OM) within 2 log-likelihood units of the encephalization increases and decreases in addition to a remark- highest score (Table 1). There is broad agreement among the ably static basal Carnivora allometry that characterizes much of the OM with differences primarily in estimates of allometric slopes.
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • Animal Diversity Part 2
    Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 –
    [Show full text]