Diversity of Animals 355 15 | DIVERSITY of ANIMALS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brains of Primitive Chordates 439
Brains of Primitive Chordates 439 Brains of Primitive Chordates J C Glover, University of Oslo, Oslo, Norway although providing a more direct link to the evolu- B Fritzsch, Creighton University, Omaha, NE, USA tionary clock, is nevertheless hampered by differing ã 2009 Elsevier Ltd. All rights reserved. rates of evolution, both among species and among genes, and a still largely deficient fossil record. Until recently, it was widely accepted, both on morpholog- ical and molecular grounds, that cephalochordates Introduction and craniates were sister taxons, with urochordates Craniates (which include the sister taxa vertebrata being more distant craniate relatives and with hemi- and hyperotreti, or hagfishes) represent the most chordates being more closely related to echinoderms complex organisms in the chordate phylum, particu- (Figure 1(a)). The molecular data only weakly sup- larly with respect to the organization and function of ported a coherent chordate taxon, however, indicat- the central nervous system. How brain complexity ing that apparent morphological similarities among has arisen during evolution is one of the most chordates are imposed on deep divisions among the fascinating questions facing modern science, and it extant deuterostome taxa. Recent analysis of a sub- speaks directly to the more philosophical question stantially larger number of genes has reversed the of what makes us human. Considerable interest has positions of cephalochordates and urochordates, pro- therefore been directed toward understanding the moting the latter to the most closely related craniate genetic and developmental underpinnings of nervous relatives (Figure 1(b)). system organization in our more ‘primitive’ chordate relatives, in the search for the origins of the vertebrate Comparative Appearance of Brains, brain in a common chordate ancestor. -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
Quaderni Del Museo Civico Di Storia Naturale Di Ferrara
ISSN 2283-6918 Quaderni del Museo Civico di Storia Naturale di Ferrara Anno 2018 • Volume 6 Q 6 Quaderni del Museo Civico di Storia Naturale di Ferrara Periodico annuale ISSN. 2283-6918 Editor: STEFA N O MAZZOTT I Associate Editors: CARLA CORAZZA , EM A N UELA CAR I A ni , EN R ic O TREV is A ni Museo Civico di Storia Naturale di Ferrara, Italia Comitato scientifico / Advisory board CE S ARE AN DREA PA P AZZO ni FI L ipp O Picc OL I Università di Modena Università di Ferrara CO S TA N ZA BO N AD im A N MAURO PELL I ZZAR I Università di Ferrara Ferrara ALE ss A N DRO Min ELL I LU ci O BO N ATO Università di Padova Università di Padova MAURO FA S OLA Mic HELE Mis TR I Università di Pavia Università di Ferrara CARLO FERRAR I VALER I A LE nci O ni Università di Bologna Museo delle Scienze di Trento PI ETRO BRA N D M AYR CORRADO BATT is T I Università della Calabria Università Roma Tre MAR C O BOLOG N A Nic KLA S JA nss O N Università di Roma Tre Linköping University, Sweden IRE N EO FERRAR I Università di Parma In copertina: Fusto fiorale di tornasole comune (Chrozophora tintoria), foto di Nicola Merloni; sezione sottile di Micrite a foraminiferi planctonici del Cretacico superiore (Maastrichtiano), foto di Enrico Trevisani; fiore di digitale purpurea (Digitalis purpurea), foto di Paolo Cortesi; cardo dei lanaioli (Dipsacus fullonum), foto di Paolo Cortesi; ala di macaone (Papilio machaon), foto di Paolo Cortesi; geco comune o tarantola (Tarentola mauritanica), foto di Maurizio Bonora; occhio della sfinge del gallio (Macroglossum stellatarum), foto di Nicola Merloni; bruco della farfalla Calliteara pudibonda, foto di Maurizio Bonora; piumaggio di pernice dei bambù cinese (Bambusicola toracica), foto dell’archivio del Museo Civico di Lentate sul Seveso (Monza). -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Alyssa Weinrauch
The digestive physiology of the Pacific hagfish, Eptatretus stoutii by Alyssa Weinrauch A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physiology, Cell and Developmental Biology Department of Biological Sciences University of Alberta © Alyssa Weinrauch, 2019 Abstract Hagfish are considered the oldest living representatives of the vertebrates and as such are of interest for studies in evolutionary biology. Moreover, hagfish occupy a unique trophic niche wherein they are active predators and benthic scavengers of a wide range of invertebrate and vertebrate prey, yet can tolerate nearly a year of fasting. Hagfish are also capable of acquiring nutrients across the integument in a manner similar to that of marine invertebrates, a hallmark of their position between the invertebrate and vertebrate lineages. Despite many interesting modes of feeding, relatively few studies have examined the digestive physiology of the hagfishes. Feeding and digestion cause many physiological perturbations, which result in elevated metabolic rate. I have characterised the increased metabolic demand (specific dynamic action) and determined that its peak in hagfish corresponds with the peak of acid-base alterations. Specifically, the rate of base efflux reaches a maximum 8 h post- feeding when the intestinal blood supply is significantly more alkaline. The offloading of base to the circulation (alkaline tide) is common of vertebrates that employ an acidic digestion in order to maintain cellular acid-base homeostasis. Likewise, the hagfishes employ a luminal acidification, despite lacking a stomach. I further investigated the cellular mechanisms responsible for hindgut luminal acidification and found that soluble adenylyl cyclase and cAMP are utilised to enhance proton secretion via proton-potassium exchangers (HKA), as is found in later-diverging vertebrates. -
Mollusca) Found Along the Brazilian Coast, with Two New Synonymies in the Genus Gadila Gray, 1847
Biota Neotrop., vol. 13, no. 2 A commented list of Scaphopoda (Mollusca) found along the Brazilian coast, with two new synonymies in the genus Gadila Gray, 1847 Leonardo Santos de Souza1,2, Isabella Campos Vieira Araújo1 & Carlos Henrique Soares Caetano1 1Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro – UNIRIO, Av. Pasteur, 458, Urca, CEP 22290-240, Rio de Janeiro, RJ, Brasil 2Corresponding author: Leonardo Santos de Souza, e-mail: [email protected] SOUZA, L.S., ARAÚJO, I.C.V. & CAETANO, C.H.S. A commented list of Scaphopoda (Mollusca) found along the Brazilian coast, with two new synonymies in the genus Gadila Gray, 1847. Biota Neotrop. (13)2: http://www.biotaneotropica.org.br/v13n2/en/abstract?inventory+bn03213022013 Abstract: This review aims to present an updated checklist of scaphopods, based mainly on literature database. There is a total of 40 species (six families) for Brazil, including information about the distribution and bathymetric range of each taxon. We propose two synonyms with the aid of morphometry of the shell, for the genus Gadila: G. longa as junior synonym of G. elongata and G. robusta as junior synonym of G. pandionis. Keywords: scaphopods, morphometry, synonyms, distribution, bathymetry. SOUZA, L.S., ARAÚJO, I.C.V. & CAETANO, C.H.S. Lista comentada dos Scaphopoda (Mollusca) encontrados ao longo da costa Brasileira, com duas novas sinonímias no gênero Gadila Gray, 1847. Biota Neotrop. 13(2): http://www.biotaneotropica.org.br/v13n2/pt/abstract?inventory+bn0321302201 Resumo: Uma lista atualizada dos escafópodes da costa brasileira pertencentes a seis famílias é apresentada baseada principalmente em dados da literatura. -
Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa. -
Animal Diversity Part 2
Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 – -
Cellular and Molecular Processes Leading to Embryo Formation In
Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini To cite this version: Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes through- out animal evolution. Development Genes and Evolution, Springer Verlag, 2013, 223, pp.5 - 22. 10.1007/s00427-012-0399-3. hal-01456624 HAL Id: hal-01456624 https://hal.archives-ouvertes.fr/hal-01456624 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author's personal copy Dev Genes Evol (2013) 223:5–22 DOI 10.1007/s00427-012-0399-3 REVIEW Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander V. Ereskovsky & Emmanuelle Renard & Carole Borchiellini Received: 20 December 2011 /Accepted: 26 March 2012 /Published online: 29 April 2012 # Springer-Verlag 2012 Abstract The emergence of multicellularity is regarded as metamorphosis. Thus, sponges can provide information en- one of the major evolutionary events of life. This transition abling us to better understand early animal evolution at the unicellularity/pluricellularity was acquired independently molecular level but also at the cell/cell layer level. -
True Strengthstrength
Fall 2017 TRUETRUE STRENGTHSTRENGTH Mike Nichols’ life was upended after he shattered a vertebra during a hockey game in 2014. But with an incredible positive attitude, the MCC student has bounced back. He’s studying com- municatons and has started the Mikey Strong Foundation to fund treatment. See page 6. CAMPUS NEWS Terri Orosz Honored with Community College Spirit Award The New Jersey Council of County Colleges (NJCCC) Guided Pathways and Middle States accreditation. presented the 2017 Community College Spirit Award to Dr. Orosz is a community college graduate herself. Theresa Orosz, assistant dean in the Division of Arts She received an A.A.S. in Accounting from MCC; a B.S. and Sciences at MCC, for her exemplary support of New in Management Science and an M.A. in Liberal Studies Jersey’s community colleges. from Kean University; and a Doctorate in Educational The award was presented in June during its annual New Leadership from Rowan University. Jersey Community College Awards Ceremony, which also honored Raritan Valley Community College Assistant Professor Kathryn Suk with a Spirit Award. “Since its inauguration in 1993, the Community College Spirit Award has been an honor bestowed to those who embody the community college spirit – perseverance, dedication and excellence,” said NJCCC Chair Helen Albright. Dr. Orosz was recognized for working with the New Jersey Center for Student Success, specifically for helping develop the Center’s two-year strategic plan and serving as a co-presenter at several national community college student success conferences. She has 25 years of experience working with From left: MCC President Joann La Perla-Morales; Helen Albright, chair community colleges, including in Academic and Student of the New Jersey Council of County Colleges; Student Success Executive Affairs, Academic Advising, Career Services, and Director Christine Harrington, who accepted the award on behalf of Kath- Continuing Education. -
Marine Shell Hoard from the Late Neolithic Site of :Epin-Ov;Ara (Slavonia, Croatia)
Documenta Praehistorica XLIII (2016) Marine shell hoard from the Late Neolithic site of :epin-Ov;ara (Slavonia, Croatia) Boban Tripkovic´ 1, Vesna Dimitrijevic´ 2 and Dragana Rajkovic´ 3 1 Department of Archaeology, Faculty of Philosophy, University of Belgrade, RS [email protected] 2 Laboratory for Bioarchaeology, Department of Archaeology, Faculty of Philosophy, University of Belgrade, RS [email protected] 3 Museum of Slavonia in Osijek, HR [email protected] ABSTRACT – The focus of this paper is the ornament hoard from the Sopot culture site of ∞epin-Ov- ≠ara in eastern Slavonia (the Republic of Croatia). The hoard contained pendants and beads made of shells of marine clam Spondylus gaederopus and scaphopod Antalis vulgaris. The paper analyses the context and use wear of the objects in the hoard. The results form a basis for: the reconstruction of the role of some of the items and the ways in which they were worn; the premise that the dynam- ics and mechanisms of acquisition of ornaments made of the two Mediterranean mollusc species could have differed; and the identification of a cross-cultural pattern of deposition of ornament hoards. IZVLE∞EK – V ≠lanku se osredoto≠amo na zakladno najdbo z nakitom iz ≠asa sopotske kulture na najdi∏≠u ∞epin-Ov≠ara v vzhodni Slavoniji (Republika Hrva∏ka). Depo vsebuje obeske in jagode, iz- delane iz lupin morskih ∏koljk vrste Spondylus gaederopus in pol∫kov vrste Antalis vulgaris. V ≠lanku analiziramo kontekste in sledove uporabe teh izdelkov. Rezultati nam nudijo osnovo za: rekonstruk- cijo vloge nekaterih izdelkov in na≠inov no∏enja nakita; premiso o razli≠nih dinamikah in mehaniz- mih pridobivanja okrasov iz dveh sredozemskih vrst mehku∫cev; in za prepoznavanje medkulturnih vzorcev odlaganja zakladnih najdb z nakitom. -
Deep-Sea Video Technology Tracks a Monoplacophoran to the End of Its Trail (Mollusca, Tryblidia)
Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia) Sigwart, J. D., Wicksten, M. K., Jackson, M. G., & Herrera, S. (2018). Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia). Marine Biodiversity, 1-8. https://doi.org/10.1007/s12526-018-0860-2 Published in: Marine Biodiversity Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06. Oct. 2021 Deep-sea video technology tracks a monoplacophoran to the end of its trail (Mollusca, Tryblidia) Sigwart, J.