The Geological Succession of Primary Producers in the Oceans

Total Page:16

File Type:pdf, Size:1020Kb

The Geological Succession of Primary Producers in the Oceans CHAPTER 8 The Geological Succession of Primary Producers in the Oceans ANDREW H. KNOLL, ROGER E. SUMMONS, JACOB R. WALDBAUER, AND JOHN E. ZUMBERGE I. Records of Primary Producers in Ancient Oceans A. Microfossils B. Molecular Biomarkers II. The Rise of Modern Phytoplankton A. Fossils and Phylogeny B. Biomarkers and the Rise of Modern Phytoplankton C. Summary of the Rise of Modern Phytoplankton III. Paleozoic Primary Production A. Microfossils B. Paleozoic Molecular Biomarkers C. Paleozoic Summary IV. Proterozoic Primary Production A. Prokaryotic Fossils B. Eukaryotic Fossils C. Proterozoic Molecular Biomarkers D. Summary of the Proterozoic Record V. Archean Oceans VI. Conclusions A. Directions for Continuing Research References In the modern oceans, diatoms, dinoflagel- geobiological prominence only in the Mesozoic lates, and coccolithophorids play prominent Era also requires that other primary producers roles in primary production (Falkowski et al. fueled marine ecosystems for most of Earth 2004). The biological observation that these history. The question, then, is What did pri- groups acquired photosynthesis via endo- mary production in the oceans look like before symbiosis requires that they were preceded in the rise of modern phytoplankton groups? time by other photoautotrophs. The geologi- In this chapter, we explore two records cal observation that the three groups rose to of past primary producers: morphological 133 CCh08-P370518.inddh08-P370518.indd 113333 55/2/2007/2/2007 11:16:46:16:46 PPMM 134 8. THE GEOLOGICAL SUCCESSION OF PRIMARY PRODUCERS IN THE OCEANS fossils and molecular biomarkers. Because without well developed frustules might these two windows on ancient biology are well leave no morphologic record at all in framed by such different patterns of pres- sediments. ervational bias and diagenetic selectivity, By virtue of their decay-resistant extracel- they are likely to present a common picture lular sheaths and envelopes, many cyano- of stratigraphic variation only if that view bacteria have a relatively high probability reflects evolutionary history. of entering the fossil record, and some ben- thic lineages are both readily preservable I. RECORDS OF and morphologically distinctive (Knoll and PRIMARY PRODUCERS Golubic 1992). On the other hand, impor- IN ANCIENT OCEANS tant picoplankton such as Prochlorococcus are unlikely to leave recognizable body (or, as A. Microfossils it turns out, molecular) fossils. A number of algal clades include good candidates for fos- Microfossils, preserved as organic cell silization, especially groups with distinctive walls or mineralized tests and scales, record resting stages (phycomate prasinophytes, the morphologies and (viewed via transmis- dinoflagellates) or mineralized skeletons sion electron microscopy) ultrastructures of (diatoms, coccolithophorids, coralline reds, ancient microorganisms. Such fossils can caulerpalean and dasyclad greens). Other provide unambiguous records of phyto- primary producers fossilize occasionally, but plankton in past oceans—diatom frustules, only under unusual depositional or diage- for example—and they commonly occur netic circumstances (e.g., Butterfield 2000; in large population sizes, with numerous Xiao et al. 2002, 2004; Foster and Afonin 2006), occurrences that permit fine stratigraphic and still others rarely if ever produce mor- resolution and wide geographic coverage. phologically interpretable fossils. Set against this is a number of factors Diagenesis can obliterate fossils as well that limit interpretation. Not all photoau- as preserve them: organic walls are subject totrophs produce preservable cell walls or to post-depositional oxidation and min- scales, and, of those that do, not all gener- eralized skeletons may dissolve in under- ate fossils that are taxonomically diagnos- saturated pore waters. The result is that tic. Thus, although many modern diatoms presence and absence cannot be weighted precipitate robust frustules of silica likely equally in micropaleontology. The presence to enter the geologic record, others secrete of a fossil unambiguously shows that the weakly mineralized shells with a corre- cell from which it derived lived at a certain spondingly lower probability of preserva- time in a particular place, but absence may tion. Similarly, whereas dinoflagellates as a reflect true absence, low probability of fos- group have left a clear record of dinocysts, silization, or obfuscating depositional or many extant species do not produce pre- diagenetic conditions. For older time inter- servable cysts and others form cysts that vals, tectonic destruction of the sedimentary would not be recognized unambiguously record imposes an additional challenge; in as dinoflagellate in fossil assemblages. (The particular, subduction inexorably destroys phylogenetic affinities of fossil dinocysts oceanic crust and the sediments that mantle are established by the presence of an arche- it, so that deep sea sediments are common opyle, a distinctive excystment mechanism only in Jurassic and younger ocean basins. peculiar to but not universally found within dinoflagellates.) Especially in the early his- B. Molecular Biomarkers tory of a group, character combinations that readily distinguish younger members may The chemical constituents of biomass pro- not be in place. Thus, stem group diatoms duced by living organisms can be incorporated CCh08-P370518.inddh08-P370518.indd 113434 55/2/2007/2/2007 11:16:46:16:46 PPMM I. RECORDS OF PRIMARY PRODUCERS IN ANCIENT OCEANS 135 into sediments and ultimately into sedimen- can remain recognizable as the products of tary rocks that can survive for billions of years. particular biosynthetic pathways on time Where these compounds are preserved in scales that approach the age of the Earth recognizable forms, they represent another (e.g., Brocks and Summons 2004; Peters opportunity for organisms to leave a trace et al. 2005). of themselves in the fossil record. Organic The character of the information con- biomarkers are the diagenetically altered tained in molecular fossils is variable. Some remains of the products of cellular biosyn- are markers for the presence and, to the thesis and may be aptly termed molecular extent they can be quantified relative to other fossils. Most biomarkers are derived from inputs, abundance of particular organisms. lipids and are potentially stable over bil- The taxonomic specificity of such biomar- lion-year time scales under ideal conditions kers ranges from species to domain level. (Brocks and Summons 2004). Others are markers for the operation of a Given the variety of organic compounds particular physiology or biosynthetic path- produced by cells, and the vast quantities of way that may have a broad and/or patchy sedimentary organic matter in a rock record taxonomic distribution. Still other kinds of that stretches back billions of years, biomar- biomarkers are most strongly associated kers are a potentially rich source of informa- with specific depositional settings, making tion concerning the diversity and ecology of their presence more indicative of paleoen- ancient communities. However, the process vironmental conditions than of any particu- of organic matter incorporation into rocks lar biology. Interpretation of the molecular and its transformation during deep burial fossil record depends on our ability to rec- imposes some strong constraints on the ognize biomarker compounds, link them to kinds of information that can be recovered biosynthetic precursors, and then to make millions of years after the fact. The classes of inferences about what the presence of those molecules that contain molecular sequence molecules in the rock record tells us about information, nucleic acids and most pro- contemporary biology and geochemistry. teins, do not survive long in the geologic Turning to biomarkers that might estab- environment. DNA can survive for at least lish a molecular fossil record of primary pro- a few hundred thousand years, especially in duction in marine settings, several classes reducing environments such as euxinic sed- of compounds are promising for their com- iments (e.g., Coolen et al. 2004) where het- bination of biochemical and/or taxonomic erotrophy is curtailed by a lack of electron specificity. Pigments are natural candidates, acceptors but is not an option where the representing markers of the photosynthetic aim is to look at changes on million-year or machinery itself. Input of chlorophyll to longer time scales. Other kinds of biomol- sediments can result in several kinds of ecules, however, prove remarkably resilient molecular fossils, including porphyrins in the rock record. and the pristane and phytane skeletons of Any molecule with a hydrocarbon skel- the chlorophyll side-chain (Figure 1). It was eton has the potential to be preserved the recognition of vanadyl porphyrin as over long periods. For the most part, this the molecular fossil of chlorophyll that led means the hydrocarbon portions of mem- Alfred Treibs (1936) to make the first com- brane lipids, which are the major constitu- pelling chemical argument for the biogenic ent of extractable organic matter (bitumen) origin of petroleum. Other pigments, such in sedimentary rocks. Diagenesis quickly as carotenoids, are subject to very selective strips these compounds of their reactive preservation, generally requiring the pres- polar functionalities, and over longer peri- ence of reduced sulfur species; the functional ods causes stereochemical and structural groups that confer many
Recommended publications
  • Stromatolites
    Stromatolites What is a stromatolite? A stromatolite (literally, ‘layered rock’) is a solid structure created by single-celled microbes called cyanobacteria (blue-green algae). The cyanobacteria form colonies and trap sediment with their sticky surface coatings. The trapped sediment reacts to calcium carbonate in the water to form limestone. These limestone deposits build up very slowly – it can take a stromatolite 100 years to grow 5 cm. A 1 m-high stromatolite might be 2,000 years old! Where are they found? Shark Bay’s stromatolites are found around the shallows of Hamelin Pool , located in the southern part of the eastern bay. Between 4,000 to 6,000 years ago a massive seagrass bank called the Fauré Sill began to block tidal flow into Hamelin Pool, causing the water to become extremely concentrated, or hypersaline. The water in Hamelin Pool is twice as salty as water in the open ocean! Animals that would normally graze on algae, such as chitons and snails, cannot survive in these conditions. Around 3,000 years ago cyanobacteria started flourishing, forming stromatolites much as they did billions of years ago. More than 50 species of cyanobacteria live in Hamelin Pool. What do they look like? Stromatolites look like a cross between a cauliflower and a rock. However, unlike rocks they are actually alive – each stromatolite has a top surface layer teeming with living, active cyanobacteria. At least 3,000 million cyanobacteria can fit in 1 m2! Because cyanobacteria are plants, they photosynthesise their energy from the sun. A by-product of photosynthesis is oxygen, and if you look very carefully you may see the stromatolites gently ‘fizzing’ as tiny bubbles of oxygen are released by the cyanobacteria into the water.
    [Show full text]
  • Type of Primary Producers and the Rate of Nutrient Supply
    石 油 技 術 協 会 誌 第60巻 第1号 (平 成7年1月) JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 60, NO. 1 (Jan., 1995) 論 文 ・報 告 Molecular geochemical approach to the Paleoceano graphicassessment of Neogene sediments of Yashima area, Akita Basin, Japan* Masanobu Yamamoto** and Yoshio Watanabe** (Received July 28, 1994; accepted November 9, 1994) Abstract: Specific source marker compounds were analyzed for solvent extracts from the Onnagawa, Funakawa and Tentokuji Formations, Yashima, Akita, NE Japan. Relative abundances of higher plant markers, n-C27 alkane, n-C28 alkanoic acid and ƒÖ-hydroxy n-C22 alkanoic acid; to algal derived compounds increase upward through the Funakawa Formation, indicating the rapid increase of land plant input associated with the increase of detrital matter during the deposition of the Funakawa Formation. Dinosteranes as specific compounds of dinoflagellates are more abundant in the lower part of the Onnagawa and the Funakawa Formations than in the middle and upper parts of the Onnagawa and the Tentokuji Formations. C25 highly branched isoprenoid (HBI) alkane as a specific compound of diatoms is abundant in the Onnagawa Formation, while less abundant in the Funakawa and Tentokuji Formations. The negative behavior of C25 HBI alkane/n-C21 alkane and dinosterane/4-desmethylsterane ratios through the Onnagawa Formation probably reflects the changes in primary producers likely due to the changes of nutrient silica concentration of surface water. The high dinosterane/4- desmethylsterane ratio in the Tentokuji Formation seems to reflect the increase of coastal dinoflagellates under the influence of riverine water inflow. An increase of hopane/sterane ratio in the Funakawa Formation probably reflects the increase of aerobic bacterial activity during early diagenesis resulted from bottom water oxygenation in this period.
    [Show full text]
  • Carbon Cycling and Calcification in Hypersaline Microbial Mats
    Carbon cycling and calcification in hypersaline microbial mats Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat.- Dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Rebecca Ludwig Bremen März 2004 Die vorliegende Arbeit wurde in der Zeit von Oktober 2000 bis März 2004 am Max-Planck-Institut für marine Mikrobiologie in Bremen angefertigt. Gutachter Prof. Dr. Bo Barker Jørgensen Prof. Dr. Gunter O. Kirst Prüfer Prof. Dr. Friederike Koenig Dr. Henk M. Jonkers Tag des Promotionskolloqiums: 14. Mai 2004 Table of contents Table of contents Thesis outline v 1 Introduction 1 Prologue 3 Carbon cycle in microbial mats: Organisms and metabolism 8 Gradients and adaptations to diel changes 17 Calcification 20 Principles and applications of microsensors 22 Sampling/study sites 28 2 Structure and function of Chiprana mats 37 Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain) 3 Rate limitation in microbial mats 71 Limitation of oxygenic photosynthesis and respiration by phosphate and organic nitrogen in a hypersaline mat: A microsensor study 4 Effect of salinity on benthic photosynthesis 89 Reduced gas diffusivity and solubility limit metabolic rates in benthic phototrophs at high salinities 5 Calcification mechanism in a microbial mat 109 Photosynthesis controlled calcification in a hypersaline microbial mat 6 Stromatolite calcification and bioerosion 127 Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites Discussion 145 Summary 151 Zusammenfassung 153 Appendix 155 Danksagung 155 List of publications 157 iii Outline Thesis outline Five manuscripts are included in this thesis that investigate the carbon cycle in microbial mats with a special emphasis on community carbon flow and mechanisms of microbial calcification.
    [Show full text]
  • Analysis of Stromatolite Reservoir Potential Using Computed Tomography By: Grant Noennig
    Analysis of Stromatolite Reservoir Potential using Computed Tomography By: Grant Noennig A thesis submitted in partial fulfillment of the requirements of the degree of Bachelor of Arts (Geology) At Gustavus Adolphus College 2016 Volumetric Analysis of Stromatolite Reservoir Potential using Computed Tomography By: Grant Noennig Under the supervision of Dr. Julie Bartley ABSTRACT Stromatolites are lithified microbial mats formed when microbes bind and trap carbonate grains or induce precipitation of carbonate material (Ahr et al., 2011). If sufficient porosity occurs within these microbialites, they have potential to contain and transmit fluids, such as petroleum. Carbonate rock accounts for more than half of the world's oil reservoirs and 40% of the world's natural gas reservoirs, but due to the complexity of fractures and matrix composing these beds, their reservoir potentials are difficult to estimate (EIA, 2013). Stromatolites from the Laney Member of the hydrocarbon-rich Green River Formation in the central United States offer an opportunity to study reservoir potential in a well-exposed succession. Most research on carbonate reservoir potential is sedimentary, stratigraphic, or petrophysical, but more complex reservoirs like stromatolites require specific techniques to determine their potential (Rezende et al., 2013). In order to determine the porosity, permeability, and pore-connectivity of this facies, samples from this location were cut into rectangular blocks and scanned using x-ray computed tomography (XRCT) at the University of Minnesota. XRCT analysis allows for the quantification of porosity and permeability values to evaluate the reservoir potential at a small scale, in three dimensions. Preliminary results indicate that Green River stromatolites are highly variable in their porosity characteristics, but some have sufficient porosity and permeability to be effective reservoir rock.
    [Show full text]
  • Grain Trapping by Microbial Mats: Implications for Stromatolites
    Grain trapping by microbial mats: Implications for stromatolites Frank Corsetti Department of Earth Sciences University of Southern California Rocks = Time Rocks = Environment Rocks = History of Life Stromatolite sharkbay.org Stromatolite Textbook Definition • laminated • organo-sedimentary structure • built by microbes (CCALA) Cyanobacteria Cyanobacteria microbial mat (“pond scum”) Stromatolite Textbook Definition Trapping and Binding 100 microns Stromatolite courtesy of Y. Ibarra Textbook Definition Mineral Precipitation Stromatolite Significance • Macroscopic from Microscopic Stromatolite Significance putative • Oldest fossils in the world ^ Warrawoona Fm Western Australia 3.5 Ga 2 cm Ancient Life: Greatest Hits Cambrian explosion Hadean Archean Proterozoic Phan. 4.0 3.0 2.0 1.0 0 billions of years LETTERS NATURE | Vol 457 | 5 February 2009 Masirah Bay Fm. soft-body parts, as detected in Doushantuo phosphorites19,22, is rare in ααα ααα αββ the geological record. Siliceous sponge spicules are metastable and S R C (17%) they can be difficult to isolate and identify unambiguously in clastic 26 sediments. Moreover, several orders of Demospongiae completely *** * 358 → 217 lack mineral skeletons. On the other hand, the studies of the lipid ααα ααα compositions of Porifera show a remarkable diversity of distinctive αββ C27 (21%) 13,27,28 R structures with abundance patterns aligned to phylogeny S 372 → 217 The demosponge biomarker record for the Huqf Supergroup supports the hypothesis that Metazoa first achieved ecological 1 αββ ααα ααα prominence in shallow marine waters of the Cryogenian . It has been C28 (16%) 386 → 217 proposed that Neoproterozoic sponges and rangeomorphs feeding S R on reactive dissolved or particulate marine organic matter29 may have progressively oxygenated their benthic environments as they moved ααα ααα αββ 24 C29 (39%) from shallow water into deeper waters .
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • Animal Diversity Part 2
    Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 –
    [Show full text]
  • Cellular and Molecular Processes Leading to Embryo Formation In
    Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini To cite this version: Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes through- out animal evolution. Development Genes and Evolution, Springer Verlag, 2013, 223, pp.5 - 22. 10.1007/s00427-012-0399-3. hal-01456624 HAL Id: hal-01456624 https://hal.archives-ouvertes.fr/hal-01456624 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author's personal copy Dev Genes Evol (2013) 223:5–22 DOI 10.1007/s00427-012-0399-3 REVIEW Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander V. Ereskovsky & Emmanuelle Renard & Carole Borchiellini Received: 20 December 2011 /Accepted: 26 March 2012 /Published online: 29 April 2012 # Springer-Verlag 2012 Abstract The emergence of multicellularity is regarded as metamorphosis. Thus, sponges can provide information en- one of the major evolutionary events of life. This transition abling us to better understand early animal evolution at the unicellularity/pluricellularity was acquired independently molecular level but also at the cell/cell layer level.
    [Show full text]
  • Geochemical Characteristics and Correlation of Oil and Nonmarine Source Rocks the Zuunbayan Il Fields Are Shown
    Geochemical characteristics and AUTHORS Cari L. Johnson Department of Geological correlation of oil and nonmarine and Environmental Sciences, Building 320, Stanford University, Stanford, California, 94305-2115; current address: Department of Geology and Geophysics, source rocks from Mongolia University of Utah, 135 South 1460 East, Browning Building, Salt Lake City, Utah, 84112-0011; Cari L. Johnson, Todd J. Greene, David A. Zinniker, [email protected] J. Michael Moldowan, Marc S. Hendrix, and Cari Johnson is an assistant professor at the Alan R. Carroll University of Utah. She received geology degrees from Carleton College (B.A., 1996) and Stanford University (Ph.D., 2002), where she also completed postdoctoral research on sequence stratigraphy of ABSTRACT the San Joaquin basin. Her dissertation focused on the sedimentary record of Late Mezosoic extension New bulk and molecular organic geochemical analyses of source rock in the China–Mongolia border region. She continues and oil samples from Mongolia indicate the presence of lacustrine- to conduct research in basin analysis, sedimentation sourced petroleum systems in this frontier region. Samples of po- and tectonics, and petroleum geology in east-central tential source rocks include carbonate, coal, and lacustrine-mudstone Asia and western North America. lithologies that range from Paleozoic to Mesozoic in age, and rep- Todd J. Greene Department of Geological and resent a variety of tectonic settings and depositional environments. Environmental Sciences, Building 320, Stanford Rock-Eval and total organic carbon data from these samples reflect University, Stanford, California, 94305-2115; current generally high-quality source rocks, including both oil- and gas-prone address: Anadarko Petroleum Corporation, 1201 Lake Robbins Drive, The Woodlands, Texas, 77380 kerogen types, mainly in the early stages of generation.
    [Show full text]
  • Diversity of Animals 355 15 | DIVERSITY of ANIMALS
    Concepts of Biology Chapter 15 | Diversity of Animals 355 15 | DIVERSITY OF ANIMALS Figure 15.1 The leaf chameleon (Brookesia micra) was discovered in northern Madagascar in 2012. At just over one inch long, it is the smallest known chameleon. (credit: modification of work by Frank Glaw, et al., PLOS) Chapter Outline 15.1: Features of the Animal Kingdom 15.2: Sponges and Cnidarians 15.3: Flatworms, Nematodes, and Arthropods 15.4: Mollusks and Annelids 15.5: Echinoderms and Chordates 15.6: Vertebrates Introduction While we can easily identify dogs, lizards, fish, spiders, and worms as animals, other animals, such as corals and sponges, might be easily mistaken as plants or some other form of life. Yet scientists have recognized a set of common characteristics shared by all animals, including sponges, jellyfish, sea urchins, and humans. The kingdom Animalia is a group of multicellular Eukarya. Animal evolution began in the ocean over 600 million years ago, with tiny creatures that probably do not resemble any living organism today. Since then, animals have evolved into a highly diverse kingdom. Although over one million currently living species of animals have been identified, scientists are [1] continually discovering more species. The number of described living animal species is estimated to be about 1.4 million, and there may be as many as 6.8 million. Understanding and classifying the variety of living species helps us to better understand how to conserve and benefit from this diversity. The animal classification system characterizes animals based on their anatomy, features of embryological development, and genetic makeup.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Changes in the Lipid Composition of Antarctic Sea-Ice Diatom Communities During a Spring Bloom
    Antarctic Science 1 (2): 133-140 (1989) Changes in the lipid composition of Antarctic sea-ice diatom communities during a spring bloom: an indication of community physiological status PETER D.NICHOLS', ANNA C. PALMISAN02,4,MARK S. RAYNER', GLEN A. SMITH3and DAVID C. WHITE3 'CSIRo Division of Oceanography, Marine Laboratories, GPO Box 1538, Hobart, Tasmania 7001, Australia 'NASA-Ames Research Center, Moffett Field, CA 94035, USA 'Institute for Applied Microbiology, University of Tennessee, Knoxville, TN 37932-2567, USA Present address: Procter and Gamble, Ivorydale Technical Center, Cincinnati, OH 4521 7,USA Abstract: The lipid composition of natural populations of diatoms in the sea ice at McMurdo Sound was determined during the austral spring bloom of 1985, using an Iatroscan TLC-FID system. The major lipid classes in all samples were polar lipids (including phospholipid, glycolipid and chlorophyll) and triacylglycerol, with lesser proportions of free fatty acids. Total lipid increased through November and early December, reaching a maximum (3300 mg mZat Cape Armitage and 1800 mg m-2at Erebus Ice Tongue) c. one week after the chlorophyll a maxima. This increase was largely attributable to a corresponding increase in triacylglycerol. At the lipid maxima, uiacylglycerol/polar lipid ratios in the range 1.O to 2.5 were observed. The dynamic variations in lipid class abundances indicate that profound changes in the physiology of sea- ice diatoms are occurring throughout the spring bloom. A range of sterols (CX-C3J were detected; 24- methylenecholesterol,brassicasterol and 24-ethylcholesterol were the major sterols at the Cape Armitage and Erebus sites. The similarity of the sterol profiles to those of Antarctic freshwater algal communities strongly indicates diatoms as a more probable source of C, sterols in the freshwater lakes than cyanobacteria or other algal groups.
    [Show full text]