Csbrc1 Inhibits Axillary Bud Outgrowth by Directly Repressing the Auxin Efflux Carrier Cspin3 in Cucumber
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Control of Shoot Branching: an Example of Plant Information Processing
Plant, Cell and Environment (2009) 32, 694–703 doi: 10.1111/j.1365-3040.2009.01930.x The control of shoot branching: an example of plant information processing OTTOLINE LEYSER Department of Biology, Area 11, University of York, York YO10 5YW, UK ABSTRACT the apical–basal axis defined by the establishment of the shoot apical meristem at one end, and the root apical mer- Throughout their life cycle, plants adjust their body plan istem at the other. Post-embryonically, the meristems give to suit the environmental conditions in which they are rise to the entire shoot and root systems, respectively. Fur- growing. A good example of this is in the regulation of thermore, the tissues they establish can produce secondary shoot branching. Axillary meristems laid down in each leaf meristems, which if activated can produce entirely new formed from the primary shoot apical meristem can remain axes of growth with the same developmental potential as dormant, or activate to produce a branch. The decision the primary root or shoot from which they were derived. whether to activate an axillary meristem involves the assess- Thus, the body plan of a plant is determined continuously ment of a wide range of external environmental, internal throughout its life cycle, allowing it to be exquisitely envi- physiological and developmental factors. Much of this infor- ronmentally responsive. Plants can alter their body plan to mation is conveyed to the axillary meristem via a network suit their environment, and thus the environmentally regu- of interacting hormonal signals that can integrate inputs lated development of new growth axes is functionally from diverse sources, combining multiple local signals to equivalent to environmentally regulated animal behav- generate a rich source of systemically transmitted informa- iours. -
AXR1 Acts After Lateral Bud Formation to Inhibit Lateral Bud Growth in Arabidopsis
This is a repository copy of AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/262/ Article: Stirnberg, P., Leyser, O. and Chatfield, S.P. (1999) AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiology. pp. 839-847. ISSN 0032-0889 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Plant Physiology, November 1999, Vol. 121, pp. 839–847, www.plantphysiol.org © 1999 American Society of Plant Physiologists AXR1 Acts after Lateral Bud Formation to Inhibit Lateral Bud Growth in Arabidopsis1 Petra Stirnberg, Steven P. Chatfield, and H.M. Ottoline Leyser* Department of Biology, University of York, P.O. Box 373, York YO10 5YW, United Kingdom Several mutants with altered auxin sensitivity have been The AXR1 gene of Arabidopsis is required for many auxin re- produced in Arabidopsis. -
Signals Regulating Dormancy in Vegetative Buds
International Journal of Plant Developmental Biology ©2007 Global Science Books Signals Regulating Dormancy in Vegetative Buds Wun S. Chao* • Michael E. Foley • David P. Horvath • James V. Anderson Biosciences Research Laboratory, Plant Science Research, 1605 Albrecht Blvd., Fargo, ND 58105-5674, USA Corresponding author: * [email protected] ABSTRACT Dormancy in plants involves a temporary suspension of meristem growth, thus insuring bud survival and maintenance of proper shoot system architecture. Dormancy regulation is a complex process involving interactions of various signals through specific and/or overlapping signal transduction pathways. In this review, environmental, physiological, and developmental signals affecting dormancy are discussed. Environmental signals such as temperature and light play crucial roles in regulating development and release of bud dormancy. Physiological signals including phytochrome, phytohormones, and sugar are associated with changes in dormancy status that occur when plants perceive environmental signals. Developmental signals such as flowering and senescence also have an effect on bud dormancy. Currently, many genes and/or gene products are known to be responsive directly or indirectly to these signals. The potential roles for these genes in dormancy progression are discussed. _____________________________________________________________________________________________________________ Keywords: flowering, hormones, phytochrome, senescence, signaling, sugar, temperature Abbreviations: ABA, abscisic -
The American Woods
TH E I A N W O O D S A M E R C , EXHIB ITED BY ACTUAL SPECIMENS AND WITH C PIO EXPLANAT RY TEXT O US O , ROM E Y N B H H B A OU G . , . RT IX PA . REPRES ENTI NG TWENTY - FIVE S PEC I ES TWENTY - F I VE S ETS OF S E TI O NS C . LOWVI L LE N Y . U A . s . , , . P U B LI SHED AN D SEC TI O NS PREPARED B Y THE AU THOR . Copy rig ht ninet B Y R O M E WE ED—P RSONS PRI NTING A CC . E L E C TR O TY P E R S A N D P R I N TE R S ALB ANY , N . Y . T O mcfl Q i nzhnt m . i ff 1 Qé ? , P M N F TU S . AR O G FORESTER U . DE T E T UL , A RIC RE , T I X A M E R I C A N W O O D P A R , S , DEDI ATED AS AN EXPRESSION OF HIGHE TE TEE IS C S S M. 743130 EF E T THE ERIE PR AC O S S. The necessity of more generally diffu sed information concerning the variety and importance of ou r forest trees is j u stifi c ati on enou gh for the n w n n appeara ce of this work, especially at this day, he the dema ds of n Forestry in this cou ntry are constantly more and more kee ly felt . -
Patterns of Floral Bud Development in Canes of Erect and Trailing Blackberries
J. AMER. SOC. HORT. SCI. 128(1):3–7. 2003. Patterns of Floral Bud Development in Canes of Erect and Trailing Blackberries Fumiomi Takeda1 U.S. Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, 45 Wiltshire Road, Kearneysville, WV 25430 Bernadine C. Strik and Derek Peacock2 Department of Horticulture, 4017 Agriculture and Life Science Building, Oregon State University, Corvallis, OR 97331 John R. Clark Department of Horticulture, 316 Plant Science Building, University of Arkansas, Fayetteville, AR 72701 ADDITIONAL INDEX WORDS. floral primordia, floricane, inflorescence, microscopy, Rubus ABSTRACT. Flower bud development was studied in ‘Cherokee’, ‘Boysen’, and ‘Marion’ blackberries (Rubus subgenus Rubus Watson). In ‘Cherokee’ (erect type), the transition to reproductive development in buds on the branch canes occurred during September in Arkansas and Oregon. Transitions of buds in the axils of the most basal nodes (proximal to the main cane) and the most distal nodes lagged behind buds in the midsection (about nodes 6 to 10). Along the midsection of branch canes, the buds developed uniformly. In buds of ‘Boysen’ and ‘Marion’ (trailing type), the transition to reproductive development occurred in October and sepal primordia were observed in most buds examined by November. Progression of floral bud development continued into January, but at a slower rate than in autumn. Buds on the main canes (>3 m long) of ‘Boysen’ and ‘Marion’ remained at a more advanced stage of flower bud differentiation than buds on the basal branch canes. In both cultivars, buds from the middle one-third section, and sometimes buds from the bottom one-third section, tended to be more advanced than those buds in the top one-third section during much of the sampling period. -
Axillary Bud Banks of Two Semiarid Perennial Grasses: Occurrence, Longevity, and Contribution to Population Persistence
Oecologia (1997) 110:584±591 Ó Springer-Verlag 1997 J.R. Hendrickson á D.D. Briske Axillary bud banks of two semiarid perennial grasses: occurrence, longevity, and contribution to population persistence Received: 12 August 1996 / Accepted: 30 December 1996 Abstract The occurrence, longevity, and contribution of modifying population structure of these two species. Bud axillary bud banks to population maintenance were number per square meter for B. curtipendula was 25% investigated in a late-seral perennial grass, Bouteloua lower in the long-term grazed compared to the long-term curtipendula, and a mid-seral perennial grass, Hilaria ungrazed community based on a reduction in both tiller belangeri, in a semiarid oak-juniper savanna. Axillary number per plant and plant number per square meter. In buds of both species were evaluated over a 2-year period contrast, bud number per square meter for H. belangeri in communities with contrasting histories of grazing by was 190% greater in the long-term grazed than in the domestic herbivores. A double staining procedure uti- long-term ungrazed community based on a large increase lizing triphenyl tetrazolium chloride and Evan's blue in plant density per square meter. Minimal contributions indicated that both viable and dormant axillary buds of axillary bud banks to annual maintenance of tiller remained attached to the base of reproductive parental populations in this mid- and late-seral species under- tillers for 18±24 months which exceeded parental tiller scores the ecological importance of consistent tiller re- longevity by approximately 12 months. Bud longevity of cruitment from recently developed axillary buds. -
Pruning Concepts; Apple
Winter Pruning for Best Results Dr. Ron Perry Department of Horticulture Michigan State University • Pruning: removal of a branch by mechanical means. • WHY: – Facilitate ease of cultural practices – Increase light penetration • Better fruit bud differentiation • Better fruit color & quality • Faster wound healing with UV light • Better flower bud development of flowering trees – Decrease mechanical injury to fruit & limbs • Limb rub • Fruit abrasion WHY: – Decrease fruit-bearing surface: better ratio of foliage/fruit • Better fruit size • Decrease fruit numbers • Decrease alternate bearing – Renew growth • Renews spur growth and vegetative growth – Maintain training system / structural framework – Remove broken, dying, & diseased branches – Better canopy air circulation= less disease, fruit cracking, better wound healing What happens to un-pruned trees? – Trees are Larger – Many branches; bush form (multi trunk) – Yield small fruits – Dense canopy – Bark inclusion – Poor structure / framework – More broken and diseased branches Plant Responses to Pruning • Pruning is a dwarfing process, that stimulates growth at localized sites ? From: Myers, S.C. and A. T. Savelle. 1996. Coordination of Vegetative and Reproductive Growth: Root restriction, branch manipulation and pruning. In, Tree Physiology Growth and Development, pub. by Good Fruit Grower, pp 69-80. Pruning……. • Removes usable reserves, both nitrogenous and carbohydrates. • Reduces next years’ growth potential • Loss of cambial /meristematic surface = net loss in wood growth • Growth near cuts is stimulated; overall, tree is reduced or dwarfed. • Therefore: pruning increases shoot growth but reduces total shoot and root growth. From: Forshey, C., D. Elfving and R. Stebbins. 1992. Training and Pruning Apple and Pear Trees. Pub. By Amer. Soc. Hort. Sci., 166 pages Plant Responses to Pruning Young Trees – Delays onset of fruit production in young trees – Reduces yields in early years – Strengthens framework scaffolding in young trees • Mature Trees – Reduces stored carbohydrates in wood. -
Apical Dominance in Alstroemeria Cultured in Vitro
Apical Dominance in Alstroemeria Cultured In Vitro P. Pumisutapon, R.G.F. Visser and G.-J. De Klerk Wageningen UR Plant Breeding PO Box 16, 6700 AA, Wageningen The Netherlands Keywords: axillary buds, rhizomes, bud outgrowth, decapitation, auxin Abstract Apical dominance in Alstroemeria is studied to develop an improved propagation protocol for this crop. Four types of explants were prepared: an intact rhizome with two intact shoots (+R+2S), an intact rhizome with two decapitated shoots (+R-2S), a decapitated rhizome with two intact shoots (-R+2S), and a decapitated rhizome with two decapitated shoots (-R-2S). The explants were cultivated on solid MS medium with 9 µM 6-benzylaminopurine (BAP). -R-2S explants showed the highest and +R+2S the lowest axillary-bud outgrowth. Outgrowth in -R+2S and +R-2S explants was intermediate. So, axillary buds are released by removal of the rhizome tip and by removal of the shoot tips. In both decapitated shoots and decapitated rhizomes, application of lanolin with 3- indolebutyric acid (IBA) to the cut end restored apical dominance. This indicates that both tips exert an effect via basipetally transported auxin. INTRODUCTION Alstroemeria plants consist of aerial shoots and a rhizome. Growth occurs sympodially: at each node, the apex of the horizontally growing rhizome changes direction of growth from horizontal to vertical, forms a shoot, and then stops growing. At the same time, the first axillary bud at the node grows out horizontally and continues as rhizome. Thus, the rhizome is composed of segments of axillary shoots. The second (next higher) axillary bud in a shoot may stay dormant or may develop into a lateral rhizome (Van Schaik, 1998). -
Identifying Plant Tissues
+ Identifying Plant Tissues Chapter 4 + Combining Cells to Form Tissues ! Plants grow as cells divide to produce new cells in areas of the plant called meristems. ! After new cells are produced, they specialize for certain functions, enlarging and changing their structure to match their function. ! Cells…..tissues…..tissue systems…..organs + Four Main Types of Tissue Systems ! Meristematic tissue system- contains cells that are actively dividing to produce new plant tissue ! Ground tissue system- contains tissues that make up the bulk of the plant ! Do photosynthesis ! Support ! Store food ! Repair damage + Four Types of Tissue Systems ! Vascular tissue system- conducts water, minerals, and sugars throughout plant ! Dermal tissue system- protect plant and prevents water loss from tissues + Meristematic Tissues ! Meristematic tissues are tissues where cells are actively multiplying to provide new cells for plant growth. ! permanent regions of active cell division ! all purpose cells ! can become any type of plant cell ! small, box-shaped, small vacuoles + Meristematic Tissues ! As the cells enlarge, they begin to differentiate, becoming specialized for a certain function. ! Two plant organ systems- ! Shoot system- above ground, supports leaves, flower, and fruits ! Root system- underground, absorbs water and minerals + Meristematic Tissues ! Four types of meristems ! Apical meristems ! Axillary buds ! Lateral meristems ! Intercalary meristems + Meristematic Tissue - Apical ! Apical Meristems - Found at the tips of roots and shoots. Plants get taller, and roots get longer, from their tips. ! Increase in length as the apical meristems produce new cells (primary growth) ! Divide to produce new cells, which elongate, making roots get longer and shoots get taller. ! Primary Meristems ! Protoderm ! Ground Meristem ! Procambium + Meristematic Tissue – Apical ! Once cells elongate and differentiate into a particular cell type, they usually can’t divide any more due to their rigid cell walls. -
Prospects for Disrupting Rhizome Apical Dominance Prior to Chemical Treatment of Phalaris Arundinacea Craig A
RESEARCH REPORT Prospects for Disrupting Rhizome Apical Dominance Prior to Chemical Treatment of Phalaris arundinacea Craig A. Annen ABSTRACT Reed canarygrass (Phalaris arundinacea) is a widely distributed invasive species that dominates many natural areas and restoration sites. Cost-effective suppression and restoration strategies need to be developed for plant communities affected by this species. Pretreatments designed to disrupt rhizome apical dominance may augment herbicide performance by making reed canarygrass rhizomes more susceptible to herbicide applications. I tested whether coupling pretreatment disking or kinetin application to herbicide application would enhance chemical control relative to only solitary herbicide application. I also evaluated the relative performance of two grass-selective herbicides, sethoxydim and fluazifop. All treatments suppressed reed canarygrass and indirectly led to improvements in existing native species abundance com- pared to the untreated control. In terms of reed canarygrass suppression, non–reed canarygrass aboveground biomass, and species diversity (Shannon’s diversity), fluazifop performed as well as sethoxydim. Reed canarygrass biomass was consistently lower in plots where either disking or kinetin pretreatments were coupled with herbicide application than in plots receiving only herbicide treatment, though the degree of additional suppression varied with choice of herbicide. When sethoxydim was used for follow-up herbicide applications, disking reduced reed canarygrass biomass more than -
Leaf Blades on Magnolia Floral Buds
Leaf blades on magnolia floral buds by John D. Freeman and floral buds are entirely enclosed and protected by a pair of leaf parts, Occasional development of a leaf the stipules, which may be much larger blade near the apex of a Magnolia in the case of floral buds than in either flower bud has probably been observed typical Magnolia leaves or vegetative by many who collect, study, and grow buds. Paired stipules are sometimes these plants. Discovery of an example apparently fused into one unit (as in of this anomaly on a branch of t)f. Magnolia) or may be present as macrophylla collected by Harold separate valve-like structures (as in Hopkins and me at Oak Hill, AL, in Liriodendron). Since the outermost May 1985 (see photographs) led to flower parts are enclosed by stipules in development of this note at his Magnolia buds, the outer perianth suggestion. segments are not primarily protective. The botanical nature of the When little distinction exists among structure(s) enclosing Magnolia buds, perianth segments except the relative both vegetative and floral, is somewhat positions, they are typically called unusual. In most plants the scales tepals rather than sepals and petals. covering vegetative buds represent Abscission scars from stipules produce leaves that are reduced in size and the rings that encircle young twigs in specialized to protect bud contents, but members of Magnoliaceae. If one not in Magnolia. The outer portions of tends to think of bud scales of floral buds in most species consist of Magnolia in terms of function instead perianth segments (actual flower parts) of origin, this can lead to the erroneous known as sepals, but not in Magnolia. -
Axillary Bud Development in Rose
Axillary buddevelopmen t inros e C.A.M.Marceli s -va nAcke r Promotoren: dr. J.Tromp , hoogleraari nd etuinbouwplantenteelt , inhe tbijzonde r de overblijvende gewassen dr.M.T.M .Willemse , hoogleraar ind eplantkund e Co-promotoren:dr .ir .C.J . Keijzer, universitairdocen tbi jd evakgroe pPlantencytologi e en -Morfologie dr.ir .P.A . van dePol , universitair hoofddocent bij devakgroe p Tuinbouwplantenteelt ^OFZÖ' [ISS' Axillary buddevelopmen t inros e Ontvange',;' i 16 NOV. 1994 UB-CARDEX C.A.M. Marcelis - van Acker Proefschrift terverkrijgin g vand egraa dva n doctori nd elandbouw -e n milieuwetenschappen, opgeza gva n derecto r magnificus, dr. C.M. Karssen, inhe topenbaa r te verdedigen opvrijda g 18novembe r 1994 desnamiddag s tetwe euu ri nd eAul a vand eLandbouwuniversitei t teWageningen . ^- SIV35 « CIP-DATA KONINKLIJKE BIBLIOTHEEK, DENHAA G Marcelis-vanAcker ,C.A.M . Axillary buddevelopmen t inros e/ C.A.M.Marcelis-va n Acker. - [S.l. :s.n.] .- 111 . ThesisWageningen . -Wit href .- Wit h summary inDutch . ISBN 90-5485-309-3 Subject headings:bu ddevelopmen t ; roses. Thisthesi scontain sresult s of aresearc hprojec t ofth eWageninge n Agricultural University, Department of Horticulture,Haagstee g 3,670 8P MWageninge n andDepartmen t of Plant Cytology andMorphology , Arboretumlaan 4,6703B DWageningen , TheNetherlands . Publication ofthi sthesi s wasfinanciall y supportedby : • Boomkwekerij Bert Rombouts BV teHaper t • LEB-fonds BIBLIOTHEEK BXNDBOUWL'MN'ïiRSrriüa WAGENINGEN Stellingen 1. Bloemknopaanleg bij deroo svind tpa splaat sn aopheffe n vand eapical edominantie . Dit proefschrift 2. Effecten vanteeltconditie s tijdens deaanle gva n okselknoppen bijd e roos op de uitgroei van die knoppen komen voornamelijk tot stand viabeïnvloedin g van het overige gedeelte van de plant.