Pilummede Penderensis(Decapoda: Brachyura) from The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Crustacea, Decapoda, Brachyura) Danièle Guinot
New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura) Danièle Guinot To cite this version: Danièle Guinot. New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura). Geodiversitas, Museum National d’Histoire Naturelle Paris, 2019, 41 (1), pp.747. 10.5252/geodiversitas2019v41a22. hal-02408863 HAL Id: hal-02408863 https://hal.sorbonne-universite.fr/hal-02408863 Submitted on 13 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Changer fig. 19 initiale Inverser les figs 15-16 New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura) Danièle GUINOT ISYEB (CNRS, MNHN, EPHE, Sorbonne Université), Institut Systématique Évolution Biodiversité, Muséum national d’Histoire naturelle, case postale 53, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] An epistemological obstacle will encrust any knowledge that is not questioned. Intellectual habits that were once useful and healthy can, in the long run, hamper research Gaston Bachelard, The Formation of the Scientific -
Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994). -
Fresh Record of the Moon Crab Matuta Victor (Fabricius, 1781) (Crustacea: Decapoda: Matutidae) from the Odisha Coast After a Century
Indian Journal of Geo Marine Sciences Vol. 47 (09), September 2018, pp. 1782-1786 Fresh record of the moon crab Matuta victor (Fabricius, 1781) (Crustacea: Decapoda: Matutidae) from the Odisha coast after a century Durga Prasad Behera1, Lakshman Nayak1 & Sunil Kumar Sahu2,3* 1P.G. Department of Marine Sciences, Berhampur University, India -760 007 2School of Life Science, Sun Yat-sen University, Guangzhou, China – 510 275 3BGI-Research, BGI-Shenzhen, Shenzhen, China – 518 083 *[Email: [email protected]] Received 29 December 2016; revised 20 April 2017 The recurrence of common moon crab Matuta victor (Fabricius, 1781) was recorded from near shore waters of Gopalpur port of the Ganjam district, Odisha after a century. Totally ten specimens were collected which comprised of 5 males and 5 females. Matuta victor was first reported in Chilika Lake during 1915. [Keywords: Recurrence; Crab; Matuta victor; Odisha; Super cyclone] Introduction Regarding information on crab diversity along south Considering the ecological and the habitat point of Odisha, Rath and Devroy reported 22 species from view the crabs represents a most significant crustacean 16 genera and 4 families in Banshadhara, Nagabali resource in offshore trawling1-2. The coastal and and Bahuda estuary23-24. The most attractive crabs in offshore water of Odisha forms a rich and diverse the tropical and subtropical area belong to family habitat for many pelagic and demersal fishery resources Calapidae and Mututidae which is popularly known as including crab. Brachyuran crabs are among the most shame faces or moon crabs 25. species-rich animal groups as studied by different On Odisha coast, the moon crab Matuta victor authors 3-4. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Population Structure, Recruitment, and Mortality of the Freshwater Crab Dilocarcinus Pagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil
Invertebrate Reproduction & Development ISSN: 0792-4259 (Print) 2157-0272 (Online) Journal homepage: https://www.tandfonline.com/loi/tinv20 Population structure, recruitment, and mortality of the freshwater crab Dilocarcinus pagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil Fabiano Gazzi Taddei, Thiago Maia Davanso, Lilian Castiglioni, Daphine Ramiro Herrera, Adilson Fransozo & Rogério Caetano da Costa To cite this article: Fabiano Gazzi Taddei, Thiago Maia Davanso, Lilian Castiglioni, Daphine Ramiro Herrera, Adilson Fransozo & Rogério Caetano da Costa (2015) Population structure, recruitment, and mortality of the freshwater crab Dilocarcinuspagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil, Invertebrate Reproduction & Development, 59:4, 189-199, DOI: 10.1080/07924259.2015.1081638 To link to this article: https://doi.org/10.1080/07924259.2015.1081638 Published online: 15 Sep 2015. Submit your article to this journal Article views: 82 View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tinv20 Invertebrate Reproduction & Development, 2015 Vol. 59, No. 4, 189–199, http://dx.doi.org/10.1080/07924259.2015.1081638 Population structure, recruitment, and mortality of the freshwater crab Dilocarcinus pagei Stimpson, 1861 (Brachyura, Trichodactylidae) in Southeastern Brazil Fabiano Gazzi Taddeia*, Thiago Maia Davansob, Lilian Castiglionic, Daphine Ramiro Herrerab, Adilson Fransozod and Rogério Caetano da Costab aLaboratório de Estudos de Crustáceos Amazônicos (LECAM), Universidade do Estado do Amazonas – UEA/CESP, Centro de Estudos Superiores de Parintins, Estrada Odovaldo Novo, KM 1, 69152-470 Parintins, AM, Brazil; bFaculdade de Ciências, Laboratório de Estudos de Camarões Marinhos e Dulcícolas (LABCAM), Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Av. -
A New Classification of the Xanthoidea Sensu Lato
Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated -
Mediterranean Marine Science
Mediterranean Marine Science Vol. 18, 2017 “New Mediterranean Biodiversity Records” (March 2017) LIPEJ L. Marine Biology Station, National Institute of Biology, Fornače 61, 6630 Piran ACEVEDO I. Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006 Madrid AKEL E.H.K. Fishery Biology Lab, National Institute of Oceanography and Fisheries Kait-Bey, Alexandria ANASTASOPOULOU A. Hellenic Center of Marine Research, 46.7 km Athens Sounio ave., P.O. Box 712, 19013 Anavyssos ANGELIDIS A. Kapetan Vangeli 5, 54646 Thessaloniki AZZURRO E. Institute for Environmental Protection and Research (ISPRA), STS Livorno, Piazzale dei Marmi 2, 57123, Livorno CASTRIOTA L. Institute for Environmental Protection and Research, ISPRA,Via S. Puglisi 9, STS- Palermo, 90143 Palermo ÇELIK M. Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Kötekli, Muğla CILENTI L. C.N.R. – ISMAR, UOS Lesina, Via Pola, 4 – 71010 Lesina (FG) CROCETTA F. Hellenic Center of Marine Research, 46.7 km Athens Sounio ave., P.O. Box 712, 19013 Anavyssos DEIDUN A. Department of Geosciences, University of Malta, Msida MSD 2080 DOGRAMMATZI A. Hellenic Center of Marine Research, 46.7 km Athens Sounio ave., P.O. Box 712, 19013 Anavyssos FALAUTANO M. Institute for Environmental http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 21/02/2020 06:27:07 | Protection and Research, ISPRA,Via S. Puglisi 9, STS- Palermo, 90143 Palermo FERNÁNDEZ-ÁLVAREZ Institut de Ciències del Mar F.Á. (CSIC), Passeig Maritim 37–49, 08003 Barcelona GENNAIO R. Regional Agency for Environmental Protection (ARPA) Puglia, Lecce Department, Via Miglietta 1, 73100, Lecce INSACCO G. Museo Civico di Storia Naturale, via degli Studi 9, 97013 Comiso (RG) KATSANEVAKIS S. -
How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s). -
Surat Thani Blue Swimming Crab Fishery Improvement Project
Surat Thani Blue Swimming Crab Fishery Improvement Project -------------------------------------------------------------------------------------------------------------------------------------- Milestone 33b: Final report of bycatch research Progress report: The study of fishery biology, socio-economic and ecosystem related to the restoration of Blue Swimming Crab following Fishery improvement program (FIP) in Bandon Bay, Surat Thani province. Amornsak Sawusdee1 (1) The Center of Academic Service, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160 The results of observation of catching BSC by using collapsible crab trap and floating seine. According to the observation of aquatic animal which has been caught by main BSC fishing gears; floating seine and collapsible crab trap, there were 176 kind of aquatic animals. The catch aquatic animals are shown in the table1. In this study, aquatic animal was classified into 11 Groups; Blue Swimming Crab (Portunus Pelagicus), Coelenterata (coral animals, true jellies, sea anemones, sea pens), Helcionelloida (clam, bivalve, gastropod), Cephalopoda (sqiud, octopus), Chelicerata (horseshoe crab), Hoplocari(stomatopods), Decapod (shrimp), Anomura (hermit crab), Brachyura (crab), Echinoderm (sea cucambers, sea stars, sea urchins), Vertebrata (fish). Vertebrata was the main group that was captured by BSC fishing gears, more than 70 species. Next are Helcionelloida and Helcionelloida 38 species and 29 species respectively. The sample that has been classified were photographed and attached in appendix 1. However, some species were classified as unknow which are under the classification process and reconcile. There were 89 species that were captured by floating seine. The 3 main group that were captured by this fishing gear are Vertebrata (34 species), Brachyura (20 species) Helcionelloida and Echinoderm (10 Species). On the other hand, there were 129 species that were captured by collapsible crab trap. -
Phylogenetics of the Brachyuran Crabs (Crustacea: Decapoda): the Status of Podotremata Based on Small Subunit Nuclear Ribosomal RNA
Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 45 (2007) 576–586 www.elsevier.com/locate/ympev Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA Shane T. Ahyong a,*, Joelle C.Y. Lai b, Deirdre Sharkey c, Donald J. Colgan c, Peter K.L. Ng b a Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington, New Zealand b School of Biological Sciences, National University of Singapore, Kent Ridge, Singapore c Australian Museum, 6 College Street, Sydney, NSW 2010, Australia Received 26 January 2007; revised 13 March 2007; accepted 23 March 2007 Available online 13 April 2007 Abstract The true crabs, the Brachyura, are generally divided into two major groups: Eubrachyura or ‘advanced’ crabs, and Podotremata or ‘primitive’ crabs. The status of Podotremata is one of the most controversial issues in brachyuran systematics. The podotreme crabs, best recognised by the possession of gonopores on the coxae of the pereopods, have variously been regarded as mono-, para- or polyphyletic, or even as non-brachyuran. For the first time, the phylogenetic positions of the podotreme crabs were studied by cladistic analysis of small subunit nuclear ribosomal RNA sequences. Eight of 10 podotreme families were represented along with representatives of 17 eubr- achyuran families. Under both maximum parsimony and Bayesian Inference, Podotremata was found to be significantly paraphyletic, comprising three major clades: Dromiacea, Raninoida, and Cyclodorippoida. The most ‘basal’ is Dromiacea, followed by Raninoida and Cylodorippoida. Notably, Cyclodorippoida was identified as the sister group of the Eubrachyura. -
Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA).