Comparative Aspects of the Control of Posture and Locomotion in The

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Aspects of the Control of Posture and Locomotion in The Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata Andres Gabriel Vidal Gadea Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Vidal Gadea, Andres Gabriel, "Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata" (2008). LSU Doctoral Dissertations. 3617. https://digitalcommons.lsu.edu/gradschool_dissertations/3617 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. COMPARATIVE ASPECTS OF THE CONTROL OF POSTURE AND LOCOMOTION IN THE SPIDER CRAB LIBINIA EMARGINATA A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Andrés Gabriel Vidal Gadea B.S. University of Victoria, 2003 May 2008 For Elsa and Roméo ii ACKNOWLEDGEMENTS The journey that culminates as I begin to write these lines encompassed multiple countries, languages and experiences. Glancing back at it, a common denominator constantly appears time and time again. This is the many people that I had the great fortune to meet, and that many times directly or indirectly provided me with the necessary support allowing me to be here today. I will begin by thanking my parents, Roméo Vidal and Elsa Gadea, and my late grandmother Carlota Gadea. Your love, support, and trust prepared me to chase my dreams. I would certainly not be writing this today if Dr. Jim Belanger hadn’t taken a chance on me all those years ago, in letting me join his lab. Thank you for taking me to all those wonderful meetings, and for giving me the latitude to pursue my own research interests. Friendly advice and help were always just a short walk down the hall. Thank you Jim. Neuroscience at LSU is rather a small institution, I am therefore aware of my great fortune in having such a wonderful and dependable committee which provided me with more support and help that I could hope to describe here. Dr. John Caprio’s incisive, thoughtful and helpful questions. Dr. Evanna Gleason tirelessly organizing the journal club meetings that benefited us all so, always available to review manuscripts, letters. Your kind help and support will never be forgotten. Dr. Kurt Svoboda, a man of action. Always working, and always available for advice or any help with personal or academic matters. You provided me with outstanding role models that I hope to live up to. This journey at LSU has not been a solo mission, from the beginning Richard Dewell has been my “partner in crime”. We both joined Jenny Schreiner in the lab and were ourselves later joined by Marc Rinehart. All of you have helped me time and time again, and who and where I am today is made better by having had the privilege of your friendship and support. I thank you all. iii Navigating the challenges and bureaucracy necessary to arrive at a doctoral degree is not entirely unlike wandering along a gigantic Morris water maze. It is without a doubt when I say that I would have drowned in this labyrinth had it not been for the never faltering support provided by Miss Prissy Milligan. Miss Prissy has helped me on more occasions that I can remember. Always available, always friendly, always helpful. Like many graduate students before me, it is thanks to you that I am here today. This work would never be complete if I did not acknowledge the help and support I received from my girlfriend Sarah. You looked after me when I was sick. You stayed up when I was stressed. You helped me as a wonderful lab assistant no one could live up to. Thank you Sarah, from the bottom of my heart. I have left to the end acknowledging the person that has had the deepest impact in my academic career and interests. Dr. Dorothy Paul introduced me to the wonderful world of neuroethology research. Over the years she has helped me along this path in every imaginable way, finding funding, internships, reviewing posters and manuscripts. Always helpful, inspiring, Dorothy has never ceased to aid me in my pursuit to become a scientist. Your passion for research, and your commitment to it, and to your students (both past and present) are the highest standard to which I will always strive to adhere. This research was funded by The National Science Foundation Research Grant (20056), Louisiana Board of Regents RCS Program, Louisiana State University Graduate School Travel Award, and the BioGrads society. iv TABLE OF CONTENTS DEDICATION................................................................................................................................ ii ACKNOWLEDGEMENTS........................................................................................................... iii LIST OF TABLES........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii ABSTRACT.....................................................................................................................................x CHAPTER 1 INTRODUCTION .....................................................................................................1 Introduction..................................................................................................................................2 References..................................................................................................................................12 CHAPTER 2 SKELETAL ADAPTATIONS FOR FORWARDS AND SIDEWAYS WALKING IN THREE SPECIES OF DECAPOD CRUSTACEANS.............................................................18 Introduction................................................................................................................................19 Materials and Methods...............................................................................................................21 Results........................................................................................................................................26 Discussion..................................................................................................................................43 References..................................................................................................................................50 CHAPTER 3 MUSCULAR ANATOMY OF THE LEGS OF THE FORWARD WALKING CRAB, LIBINIA EMARGINATA (DECAPODA, BRACHYURA, MAJOIDEA) ........................54 Introduction................................................................................................................................55 Materials and Methods...............................................................................................................56 Results........................................................................................................................................57 Discussion..................................................................................................................................89 References..................................................................................................................................95 CHAPTER 4 MAP OF THE MOTOR NEURONS INNERVATING THE LEGS OF THE FORWARD WALKING CRAB, LIBINIA EMARGINATA (DECAPODA, BRACHYURA, MAJOIDEA)..................................................................................................................................99 Introduction..............................................................................................................................100 Materials and Methods.............................................................................................................103 Results......................................................................................................................................105 Discussion................................................................................................................................116 References................................................................................................................................127 CHAPTER 5 INTERLIMB DIFFERENCES IN THE KINEMATICS AND MUSCULAR ACTIVATION DURING FORWARD WALKING IN THE SPIDER CRAB, LIBINIA EMARGINATA.............................................................................................................................131 v Introduction..............................................................................................................................132 Materials and Methods.............................................................................................................134 Results......................................................................................................................................137 Discussion................................................................................................................................149
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Crustacea, Decapoda, Brachyura) Danièle Guinot
    New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura) Danièle Guinot To cite this version: Danièle Guinot. New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura). Geodiversitas, Museum National d’Histoire Naturelle Paris, 2019, 41 (1), pp.747. 10.5252/geodiversitas2019v41a22. hal-02408863 HAL Id: hal-02408863 https://hal.sorbonne-universite.fr/hal-02408863 Submitted on 13 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Changer fig. 19 initiale Inverser les figs 15-16 New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura) Danièle GUINOT ISYEB (CNRS, MNHN, EPHE, Sorbonne Université), Institut Systématique Évolution Biodiversité, Muséum national d’Histoire naturelle, case postale 53, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] An epistemological obstacle will encrust any knowledge that is not questioned. Intellectual habits that were once useful and healthy can, in the long run, hamper research Gaston Bachelard, The Formation of the Scientific
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Download (8MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018).
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet
    A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet Marjolaine Matabos1,2*, Verena Tunnicliffe1,3, S. Kim Juniper1,2, Courtney Dean1 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2 NEPTUNE Canada, University of Victoria, Victoria, BC, Canada, 3 VENUS, University of Victoria, Victoria, BC, Canada Abstract Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l.
    [Show full text]
  • Feeding Habits of the Spider Crab Libinia Spinosa H. Milne Edwards, 1834 (Decapoda, Brachyura) in Ubatuba Bay, São Paulo, Brazil
    413 Vol. 51, n. 2 : pp.413-417, March-April 2008 ISSN 1516-8913 Printed in Brazil BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Feeding Habits of the Spider Crab Libinia spinosa H. Milne Edwards, 1834 (Decapoda, Brachyura) in Ubatuba Bay, São Paulo, Brazil Samara de Paiva Barros 1,2 *, Valter José Cobo 1,2 and Adilson Fransozo 2,3 1Laboratório de Biologia Marinha; Instituto Básico de Biociências; Universidade de Taubaté – UNITAU; Av. Tiradentes, 500; 12030-180, Taubaté - SP - Brasil. 2Núcleo de Estudos em Biologia; Ecologia e Cultivo de Crustáceos - NEBECC. 3Departamento de Zoologia e Botânica; Universidade Estadual Paulista - UNESP; “Campus” de Botucatu; Distrito de Rubião Júnior; 18600-000; Botucatu - SP -Brasil ABSTRACT The main goal of this study was the identification of the items of the diet of the L. spinosa , based on the stomach contents analysis. The crabs were obtained from Ubatuba region north-eastern shore of São Paulo State. In the laboratory, all the individuals were dissected, the stomach was retreated and fixed in 10% formaline. The alimentary items were identified under stereomicroscope and analysed by the method of Frequency of Occurrence. A total of 194 stomachs was analysed and nine alimentary items were obtained. Unindentified material was found in 98% of analysed stomach and poriferan were present in less then 1% of stomachs. These results pointed a diversified diet explored by this crab, as well as the employment of some different methods for food intake. This suggested that these crabs could occupy different position in the trophic chain. Key words: Stomach contents, alimentary itens, spider crab INTRODUCTION Gouvêa, 1998).
    [Show full text]
  • Brachyura, Majoidea) Genera Acanthonyx Latreille, 1828 and Epialtus H
    Nauplius 20(2): 179-186, 2012 179 Range extensions along western Atlantic for Epialtidae crabs (Brachyura, Majoidea) genera Acanthonyx Latreille, 1828 and Epialtus H. Milne Edwards, 1834 Ana Francisca Tamburus and Fernando L. Mantelatto Laboratory of Bioecology and Crustacean Systematics (LBSC) - Postgraduate Program in Comparative Biology - Department of Biology - Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) - University of São Paulo (USP). Av. Bandeirantes 3900, CEP 14040- 901, Ribeirão Preto (SP), Brazil. E-mails: (AFT) [email protected]; (FLM) [email protected] Abstract The present study provided information extending the known geographical distribution of three species of majoid crabs, the epialtids Acanthonyx dissimulatus Coelho, 1993, Epialtus bituberculatus H. Milne Edwards, 1834, and E. brasiliensis Dana, 1852. Specimens of both genera from different carcinological collections were studied by comparing morphological characters. We provide new data that extends the geographical distributions of E. bituberculatus to the coast of the states of Paraná and Santa Catarina (Brazil), and offer new records from Belize and Costa Rica. Epialtus brasiliensis is recorded for the first time in the state of Rio Grande do Sul (Brazil), and A. dissimulatus is reported from Quintana Roo, Mexico. The distribution of A. dissimulatus, previously known as endemic to Brazil, has a gap between the states of Espírito Santo and Rio de Janeiro. However, this restricted southern distribution is herein amplified by the Mexican specimens. Key words: Geographic distribution, majoid, new records, spider crabs. Introduction (Melo, 1996). Epialtus bituberculatus H. Milne Edwards, 1834 has been from Florida (USA), The family Epialtidae MacLeay, 1838 Gulf of Mexico, West Indies, Colombia, includes 76 genera, among them Acanthonyx Venezuela and Brazil (Ceará to São Paulo Latreille, 1828 and Epialtus H.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • 110 This Page Intentionally Left Blank
    110 This page intentionally left blank 111 Chapter Four Flora and Fauna 44444444444 112 Birds American kestrel Falco sparverius This bird is a small falcon that is about the size of a jay. It is also known as the Sparrow Hawk. American oystercatcher Haematopus palliatus This is a larger shorebird, up to twenty-one inches, with a American oystercatcher long bright orange- red beak and orange legs. This bird is very common in shelly/sandy areas and is known for being noisy. Barn owl Tyto alba A common owl, this is the only owl with a light colored, heart Barn owl shaped face. It has dark eyes and no ear tufts. Barred owl Strix varia This owl can reach up to twenty-four inches, and is greyish- brown in color. This owl prefers wooded areas. Barred owl Black-Crowned night heron Nyctiocorax nyctiocorax These birds are characterized by their squat bodies, and red eyes. They feed mostly at dusk, therefore they appear inactive during the day. They roost in trees, on shores and in marshes. Black skimmer Rhynchops niger Black-crowned night heron This distinctive black-and-white bird, with a knife-like red bill tipped in black, nests on sand fill from newly dredged areas. The lower bill is slightly longer than the upper . They are most likely to be seen skimming along the top of the water with the lower bill in the water to catch fish. Black skimmer 113 Birds Blue-winged teal Anas discors This is a small marsh duck that prefers fresher water estua- rine areas.
    [Show full text]
  • The Magnitude of Global Marine Species Diversity
    UC San Diego Other Scholarly Work Title The Magnitude of Global Marine Species Diversity Permalink https://escholarship.org/uc/item/2dp082mj Journal Current Biology, 22(23) Author Appeltans, Ward, et al., Publication Date 2012-12-04 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Current Biology 22, 2189–2202, December 4, 2012 ª2012 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2012.09.036 Article The Magnitude of Global Marine Species Diversity Ward Appeltans,1,2,96,* Shane T. Ahyong,3,4 Gary Anderson,5 8WorldFish Center, Los Ban˜ os, Laguna 4031, Philippines Martin V. Angel,6 Tom Artois,7 Nicolas Bailly,8 9ARTOO Marine Biology Consultants, Southampton Roger Bamber,9 Anthony Barber,10 Ilse Bartsch,11 SO14 5QY, UK Annalisa Berta,12 Magdalena Błazewicz-Paszkowycz,_ 13 10British Myriapod and Isopod Group, Ivybridge, Phil Bock,14 Geoff Boxshall,15 Christopher B. Boyko,16 Devon PL21 0BD, UK Simone Nunes Branda˜o,17,18 Rod A. Bray,15 11Research Institute and Natural History Museum, Niel L. Bruce,19,20 Stephen D. Cairns,21 Tin-Yam Chan,22 Senckenberg, Hamburg 22607, Germany Lanna Cheng,23 Allen G. Collins,24 Thomas Cribb,25 12Department of Biology, San Diego State University, Marco Curini-Galletti,26 Farid Dahdouh-Guebas,27,28 San Diego, CA 92182, USA Peter J.F. Davie,29 Michael N. Dawson,30 Olivier De Clerck,31 13Laboratory of Polar Biology and Oceanobiology, University Wim Decock,1 Sammy De Grave,32 Nicole J. de Voogd,33 of Ło´ dz, Ło´ dz 90-237, Poland Daryl P.
    [Show full text]
  • A New Classification of the Xanthoidea Sensu Lato
    Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated
    [Show full text]