Download (8MB)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet
A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet Marjolaine Matabos1,2*, Verena Tunnicliffe1,3, S. Kim Juniper1,2, Courtney Dean1 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2 NEPTUNE Canada, University of Victoria, Victoria, BC, Canada, 3 VENUS, University of Victoria, Victoria, BC, Canada Abstract Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l. -
(Eledone Cirrhosa) in Atlantic Iberian Waters
Manuscript + Figure captions Click here to download Manuscript Eledone cirrhosa diet.docx Click here to view linked References 1 Factors affecting the feeding patterns of the horned octopus ( Eledone 2 cirrhosa ) in Atlantic Iberian waters 3 4 M. Regueira 1,2* , Á.Guerra 1, C.M. Fernández-Jardón 3,Á.F. González 1 5 6 1Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain. 7 2Departamento de Biologia, Universidade de Aveiro. 3810-193 Aveiro, Portugal. 8 3Facultad de Ciencias Económicas y Empresariales, Departamento de Economía Aplicada, Universidad 9 de Vigo, Campus de Vigo. 36310, Vigo, Spain. 10 11 12 *Corresponding author: [email protected] 13 Tel. (+34) 986 23 19 30 14 Fax. (+34) 986 29 27 62 15 16 17 RUNNING TITLE: Feeding patterns of Eledone cirrhosa 18 KEY WORDS: Cephalopods, Eledone cirrhosa , diet, feeding patterns, Atlantic Iberian waters, 19 Multinomial Logistic Regression. 1 20 Abstract The present study combines morphological and molecular analysis of stomach contents 21 (n=2,355) and Multinomial Logistic Regression (MLR) to understand the diet and feeding patterns of the 22 horned octopus Eledone cirrhosa inhabiting Atlantic Iberian waters. Specimens were collected monthly 23 from commercial bottom trawl fisheries between February 2009 and February 2011 in three fishing 24 grounds (North Galicia, West Galicia and North Portugal), located between 40.6 -43. 6°N and 8.6 -7.36°W. 25 Based on stomach analysis, horned octopuses in the region consumed mainly crustaceans, followed by 26 teleost fish, echinoderms, molluscs and polychaetes. Molecular analysis of 14 stomach contents 27 confirmed the visual identification of pre y items as well as cannibalistic events. -
Proceedings of the United States National Museum
descriptions of a new genus and forty-six new spp:cies of crusta(jeans of the family GALA- theid.e, with a list of the known marine SPECIES. By James E. Benedict, Assistant Curator of Marine Invertebrates. The collection of Galatheids in the United States National Museum, upon which this paper is based, began with the first dredgings of the U. S. Fish Commission steamer Albatross in 1883, and has grown as that busy ship has had opportunit}' to dredge. During the first period of its work many of the species taken were identical with those found by the U. S. Coast Survey steamer JBlake, afterwards described by A. Milne-Edwards, and in addition several new species were collected. During the voyage of the Albatross to the Pacific Ocean through the Straits of Magellan interesting addi- tions were made to the collection. Since then the greater part of the time spent by the Albatross at sea has been in Alaskan waters, where Galatheids do not seem to abound. However, occasional cruises else- where have greatly enriched the collection, notably three—one in the Gulf of California, one to the Galapagos Islands, and one to the coast of Japan and southward. The U. S. National Museum has received a number of specimens from the Museum of Natural History, Paris, and also from the Indian Museum, Calcutta. The literature of the deep-sea Galatheidie from the nature of the case is not greatly scattered. The first considerate number of species were described by A. Milne-Edwards from dredgings made by the Blake in the West Indian region. -
Two New Paleogene Species of Mud Shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America
Bulletin of the Mizunami Fossil Museum, no. 33 (2006), p. 77–85, 2 pls., 1 fig. © 2006, Mizunami Fossil Museum Two new Paleogene species of mud shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America Rene H. B. Fraaije1, Barry W. M. van Bakel1, John W. M. Jagt2, and Yvonne Coole3 1Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands <[email protected]> 2Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands <[email protected]> 3St. Maartenslaan 88, NL-6039 BM Stramproy, the Netherlands Abstract Two new species of the mud shrimp genus Upogebia (Callianassoidea, Upogebiidae) are described; U. lambrechtsi sp. nov. from the lower Eocene (Ypresian) of Egem (northwest Belgium), and U. barti sp. nov. from the upper Oligocene (Chattian) of Washington State (USA). Both new species here described have been collected from small, ball-shaped nodules; they are relatively well preserved and add important new data on the palaeobiogeographic distribution of fossil upogebiids. Key words: Crustacea, Decapoda, Upogebiidae, Eocene, Oligocene, Belgium, USA, new species Introduction Jurassic species of Upogebia have been recorded, in stratigraphic order: On modern tidal flats, burrowing upogebiid shrimps constitute the dominant decapod crustacean group. For instance, in the 1 – Upogebia rhacheochir Stenzel, 1945 (p. 432, text-fig. 12; pl. intertidal zone of the northern Adriatic (Mediterranean, southern 42); Britton Formation (Eagle Ford Group), northwest of Dallas Europe) up to 200 individuals per square metre have been recorded (Texas, USA). Stenzel (1945, p. 408) dated the Britton (Dworschak, 1987). Worldwide, several dozens of species of Formation as early Turonian, but a late Cenomanian age is Upogebia and related genera are known, and their number is still more likely (compare Jacobs et al., 2005). -
Taxonomy, Biology and Distribution of Lobsters
Taxonomy, Biology and Distribution of Lobsters 15 Rekha Devi Chakraborty and E.V.Radhakrishnan Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Kochi-682 018 Lobsters are among the most prized of fisheries resources and of significant commercial interest in many countries. Because of their high value and esteemed culinary worth, much attention has been paid to lobsters in biological, fisheries, and systematic literature. They have a great demand in the domestic market as a delicacy and is a foreign exchange earner for the country. Taxonomic status Phylum: Arthropoda Subphylum: Crustacea Class: Malacostraca Subclass: Eumalacostraca Superorder: Eucarida Order: Decapoda Suborder: Macrura Reptantia The suborder Macrura Reptantia consists of three infraorders: Astacidea (Marine lobsters and freshwater crayfishes), Palinuridea (Spiny lobsters and slipper lobsters) and Thalassinidea (mud lobsters). The infraorder Astacidea Summer School on Recent Advances in Marine Biodiversity Conservation and Management 100 Rekha Devi Chakraborty and E.V.Radhakrishnan contains three superfamilies of which only one (the Infraorder Palinuridea, Superfamily Eryonoidea, Family Nephropoidea) is considered here. The remaining two Polychelidae superfamilies (Astacoidea and parastacoidea) contain the 1b. Third pereiopod never with a true chela,in most groups freshwater crayfishes. The superfamily Nephropoidea (40 chelae also absent from first and second pereiopods species) consists almost entirely of commercial or potentially 3a Antennal flagellum reduced to a single broad and flat commercial species. segment, similar to the other antennal segments ..... Infraorder Palinuridea, Superfamily Palinuroidea, The infraorder Palinuridea also contains three superfamilies Family Scyllaridae (Eryonoidea, Glypheoidea and Palinuroidea) all of which are 3b Antennal flagellum long, multi-articulate, flexible, whip- marine. The Eryonoidea are deepwater species of insignificant like, or more rigid commercial interest. -
California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis -
Aurinete Oliv Diversidade Das Lagostas Anom Munidopsidae) Da
Universidade Federal de Pernambuco – UFPE Centro de Tecnologia e Geociência – CTG Departam ento de Oceanografia – DOCEAN Programa de Pós -Graduação em Oceanografia - PPGO Aurinete Oliveira Negromonte Diversidade das lagostas Anomura (Chirostylid ae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do B rasil e biologia populacional das espécies Munida iris A. Milne-Edwards, 1880 e Agononida longipes (A. Milne-Edwards, 1880) Recife 2015 Aurinete Oliveira Negromonte Diversidade das lagostas Anomura (Chirostylidae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do Brasil e biologia populacional das espécies Munida iris A. Milne-Edwards, 1880 e Agononida longipes (A. Milne-Edwards, 1880) Dissertação apresentada ao Programa de Pós- Graduação em Oceanografia da Universidade Federal de Pernambuco (PPGO-UFPE), como um dos requisitos para a obtenção do título de Mestre em Oceanografia, Área de concentração: Oceanografia Biológica. Orientador: Jesser Fidelis de Souza Filho Recife 2015 M393d Negromonte , Aurinete Oliveira . Diversidade das lagostas Anomura (Chirostylidae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do Brasil e biologia populacional das espécies Munida íris A. Milne-Edwards, 1880 e Agononida longipes (A. Milne-Edwards, 1880). / Felipe B. Rafael Brasiliano Cavalcante - Recife: O Autor, 2015. 88 folhas. Il., e Tabs. Orientador: Profº. Dr. Jesser Fidelis de Souza Filho. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós- Graduação em Oceanografia, 2015. Inclui Referências. 1. Oceonografia. 2. Mar profundo. 3. Estudo populacional. 4. Galateídeos. I. Souza Filho, Jesser Fidelis de. (Orientador). II. Título. UFPE 551.46 CDD (22. ed.) BCTG/2015 - 155 Universidade Federal de Pernambuco – UFPE Centro de Tecnologia e Geociência – CTG Departamento de Oceanografia – DOCEAN Programa de Pós-Graduação em Oceanografia - PPGO Aurinete Oliveira Negromonte Diversidade das lagostas Anomura (Chirostylidae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do Brasil e biologia populacional das espécies Munida iris A. -
Biology of Mediterranean and Caribbean Thalassinidea (Decapoda)
Biology of Mediterranean and Caribbean Thalassinidea (Decapoda) Peter C. DWORSCHAK Dritte Zoologische Abteilung, Naturhistorisches Museum, Burgring 7, A 1014 Wien, Austria ([email protected]) Abstract Among burrowing organisms, the most complex and extensive burrow systems are found within the Thalassinidea. This group of decapods comprises some 520+ species in currently 11 families and 80+ genera. They live predominantly in very shallow waters, where they often occur in high densities and influence the whole sedimentology and geochemistry of the seabed. In this contribution I present results of studies on the biology of several Mediterranean (Upogebia pusilla, U. tipica, Pestarella tyrrhena, P. candida, Jaxea nocturna) and Caribbean (Axiopsis serratifrons, Neocallichirus grandimana, Glypturus acanthochirus, Corallianassa longiventris) species. Of special interest is the occurrence of debris-filled chambers in the burrows of two callianassid species, Pestarella tyrrhena and Corallianassa longiventris. The possible role of this introduced plant material for the nutrition of the shrimps is discussed. 1. Introduction The Thalassinidea are a group of mainly burrowing decapod shrimps. They have attracted increased attention in recent ecological studies on marine soft-bottom benthos, especially in terms of their influence on the whole sedimentology and geochemistry of the seabed (Ziebis et al., 1996a, b), their bioturbating activities (Rowden & Jones, 1993; Rowden et al., 1998a, b) and consequent effects on benthic community structure (Posey, 1986; Posey et al., 1991; Wynberg & Branch, 1994; Tamaki, 1994). They are of particular interest because they construct very complex and extensive burrow systems (Griffis & Suchanek, 1991; Nickell & Atkinson, 1995). This group of decapods comprises some 520+ species in currently 11 families and 80+ genera. -
Approaching Marine Biodiversity Assessments Using Acoustic Methods
Listening forward: approaching marine royalsocietypublishing.org/journal/rsos biodiversity assessments using acoustic methods Review Cite this article: Mooney TA, Iorio LD, Lammers T. Aran Mooney1, Lucia Di Iorio2, Marc Lammers3, M, Lin T-H, Nedelec SL, Parsons M, Radford C, 4 5 6 Urban E, Stanley J. 2020 Listening forward: Tzu-Hao Lin , Sophie L. Nedelec , Miles Parsons , approaching marine biodiversity assessments Craig Radford7, Ed Urban8 and Jenni Stanley1 using acoustic methods. R. Soc. Open Sci. 7: 201287. 1Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, http://dx.doi.org/10.1098/rsos.201287 Woods Hole, MA 02543, USA 2CHORUS Institute, Phelma Minatec, 3 parvis Louis Néel, 38000 Grenoble, France 3Hawaiian Islands Humpback Whale National Marine Sanctuary, 726 South Kihei Road, Kihei, HI 96753, USA 4Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Received: 20 July 2020 Taipei 11529, Taiwan Accepted: 5 August 2020 5Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK 6Australian Institute of Marine Science, Perth, Western Australia 6009, Australia 7Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand Subject Category: 8Scientific Committee on Oceanic Research, University of Delaware, Newark, DE 19716, USA Organismal and Evolutionary Biology TAM, 0000-0002-5098-3354 Subject Areas: Ecosystems and the communities they -
Review of the Biology, Ecology and Fisheries of Palinurus Spp. Species
Cah. Biol. Mar. (2005) 46 : 127-142 Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911) Raquel GOÑI1 and Daniel LATROUITE2 (1) Centro Oceanográfico de Baleares – Instituto Español de Oceanografía. Muelle de Poniente s/n, 07080 Palma de Mallorca, Spain. Fax: 34 971 404945. E-mail: [email protected] (2) IFREMER, Centre de Brest, BP 70, 29280 Plouzané cedex, France. Fax 33 (0)2 98 22 46 53. E-mail: [email protected] Abstract: Palinurus elephas and Palinurus mauritanicus are the only species of the family Palinuridae that occur in the Northeast Atlantic and Mediterranean. Of the two, Palinurus elephas is the most abundant and accessible and has traditionally been the preferred target of lobster fisheries throughout its range. Palinurus mauritanicus has a deeper distri- bution and has been an important target of fisheries mainly in the Central Eastern Atlantic. The high unit value and the rel- ative scarcity of these species have been important obstacles to research and knowledge of their biology, ecology and fish- eries is limited. Nevertheless, over time a considerable number of studies has been conducted, though most of these are contained in university theses or in publications of limited circulation. This review is an up-to-date overview of available knowledge on the biology, ecology and fisheries of the two spiny lobster species of European waters. Résumé : Une revue sur la biologie, l’écologie et les pêcheries des espèces de Palinurus des eaux européennes : Palinurus elephas (Fabricius, 1787) et Palinurus mauritanicus (Gruvel, 1911). -
Developmental Changes in the Mouthparts of Juvenile Caribbean Spiny Lobster, Panulirus Argus: Implications for Aquaculture
FAD LIBRARIES Florida Atlantic University HARBOR BRANCH ~ FLORIDA ATLANTIC UNIVERSITY FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2008 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00448486. This article may be cited as: Cox, S. L., Jeffs, A. G., & Davis, M. (2008). Developmental changes in the mouthparts of juvenile Caribbean spiny lobster, Panulirus argus: Implications for aquaculture. Aquaculture, 283(1‐4), 168‐174. doi:10.1016/j.aquaculture.2008.07.019 Aquaculture 283 (2008) 168–174 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Developmental changes in the mouthparts of juvenile Caribbean spiny lobster, Panulirus argus: Implications for aquaculture Serena L. Cox a,b,⁎, Andrew G. Jeffs c, Megan Davis a a Aquaculture Division, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, USA b National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand c Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand article info abstract Article history: Light microscopy and video analysis were used to examine the mouthpart morphology and feeding Received 5 May 2008 behaviour of the Caribbean spiny lobster from puerulus (megalopal stage) (5–8 mm carapace length, CL) to Received in revised form 14 July 2008 adult (85 mm CL). Upon settlement the pueruli did not possess fully functional mouthparts, however, Accepted 14 July 2008 efficient feeding appendages appeared in the first instar juvenile (after the first moult from puerulus). -
Comparative Aspects of the Control of Posture and Locomotion in The
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata Andres Gabriel Vidal Gadea Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Vidal Gadea, Andres Gabriel, "Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata" (2008). LSU Doctoral Dissertations. 3617. https://digitalcommons.lsu.edu/gradschool_dissertations/3617 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. COMPARATIVE ASPECTS OF THE CONTROL OF POSTURE AND LOCOMOTION IN THE SPIDER CRAB LIBINIA EMARGINATA A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Andrés Gabriel Vidal Gadea B.S. University of Victoria, 2003 May 2008 For Elsa and Roméo ii ACKNOWLEDGEMENTS The journey that culminates as I begin to write these lines encompassed multiple countries, languages and experiences. Glancing back at it, a common denominator constantly appears time and time again. This is the many people that I had the great fortune to meet, and that many times directly or indirectly provided me with the necessary support allowing me to be here today.