Download (8MB)

Total Page:16

File Type:pdf, Size:1020Kb

Download (8MB) https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To Ahmed, Tarneem and Vinous DECLARATION. I hereby declare that this thesis represents, except where a note is made to the contrary, work carried out by myself. It has not been previously submitted for any degree. Khadiia A Y. Zainal August 1990 ACKNOWLEDGMENTS This work was carried out at the Zoology department, University of Glasgow and at University Marine Biological station, Millport, Isle of Cumbrae. The project was financed by a grant from Qaboos University, Sultanate of Oman- Muscat. I wish to thank my supervisors, Dr Alan Taylor and Dr Jim Atkinson for their invaluable advice, constructive criticism and generous guidance throughout the project. I gratefully acknowledge the facilities provided by Professor R.S. Phillips and the members of the Zoology department and by Professor J.A. Allen and members of the University Marine Biological Station at Millport. Many thanks to the crews of the research vessels for obtaining experimental animals; to Dr Mark Davies for catching small size Munida rugosa, and to Dr A.C. Rice (Institute of Oceanographic Sciences) for his help in identifying Munida sarsi. I am grateful to Cathy McLagan and June Freel for their help in technical laboratory work; to Liz Denton for her kind assistance in the use of the Apple Macintosh plus Computer and to Dave Henning for his help with the graphs. I thank Phil Smith for his help with Minitab for statistical analyses, Dr Chrachri, Coneilia Leibrock and Mett Thomsen for translating French, German and Danish references. Thanks to P. Rickus for his help with the photography, and to the SEMU for their help in specimen preparations for scanning electron microscopy. Many thanks go to my husband Hussein Al-Mosawi for his friendship, support, and help throughout. I am also grateful to my mother, who established my early interest in marine animals, and to my sister Fawzia Zainal for her encouragement. I am indebted to the members of the YWCA (Young Women Christian Association) who helped with the care of my children. Finally, I am especially grateful to my children Ahmed, Tarneem, and Vinous who gave moral support and made the past few years a happy time. II TABLE OF CONTENTS: Section Page No. Declaration I Acknowledgments II Contents III Abstract VI CHAPTER 1 . INTRODUCTION General context 1.1 1 Galatheid biology 1.2 2 Galatheid fisheries 1.3 4 The species studied 1.4 6 Aim and structure of thesis 1.5 9 CHAPTER 2. ECOLOGY, RELATIVE GROWTH AND FEEDING BIOLOGY INTRODUCTION 2.1 11 MATERIALS AND METHODS 2.2 14 Ecology 2.2.1 14 Relative growth; heterochely 2.2.2 14 Aspects of reproduction 2.2.3 16 Diet 2.2.4 17 Feeding behaviour 2.2.5 18 Functional morphology of the mouth parts and stomach 2.2.6 19 Munida sarsi 2.2.7 20 RESULTS 2.3 20 Ecology 2.3.1 20 Relative growth; heterochely 2.3.2 21 Aspects of reproduction 2.3.3 25 Diet 2.3.4 26 Feeding behaviour 2.3.5 26 Morphology of the mouth parts and pereiopods 2.3.6 31 Morphology of the stomach 2.3.7 36 Munida sarsi 2.3.8 39 DISCUSSION 2.4 42 Ecology 2.4.1 42 Relative growth; heterochely 2.4.2 43 Aspects of reproduction 2.4.3 47 Dietary analysis 2.4.4 50 Functional morphology of the mouth parts and chelipeds 2.4.5 51 Functional morphology of the stomach 2.4.6 54 III CHAPTER a. BRANCHIAL MORPHOLOGY, VENTILATION AND CARDIAC ACTIVITY INTRODUCTION 3.1 60 MATERIALS AND METHODS 3.2 64 Preparation of gills for light microscopy 3.2.1 64 Preparation of gills for scanning electron microscopy 3.2.2 65 Preparation of gills for transmission electron microscopy 3.2.3 65 Gill area measurements 3.2.4 66 Branchial ventilation and scaphognathite activity 3.2.5 66 Recordings of ventilatory activity under normoxic conditions 3.2.6 68 Effects of disturbance on ventilatory and cardiac activity 3.2.7 68 RESULTS 3.3 69 Branchial morphology 3.3.1 69 Thickness of the lamellar cuticle 3.3.2 71 Gill area measurements 3.3.3 72 Ventilation 3.3.4 73 The effect of disturbance on cardiac and ventilatory activity 3.3.5 76 Body weight relationships for heart rate and scaphognathite rate 3.3.6 76 DISCUSSION 3.4 77 Branchial chamber morphology 3.4.1 77 Ventilation and cardiac activity 3.4.2 82 CHAPTER 4. RESPIRATION INTRODUCTION 4.1 88 MATERIALS AND METHODS 4.2 89 Oxygen consumption rate under normoxic conditions 4.2.1 90 Effect of temperature on rates of oxygen consumption 4.2.2 92 The effect of feeding on rates of oxygen consumption 4.2.3 93 Effects of hypoxia on oxygen consumption rate 4.2.4 94 Survival experiments under anoxic condition 4.2.5 94 RESULTS 4.3 96 The relationship between M 02 and body weight . 4.3.1 97 Effect of temperature on M 02 IV heart rate and scaphognathite rate 4.3.2 99 Effects of feeding on metabolic rate 4.3.3 101 Effect of hypoxia on the rates of oxygen consumption, and on heart and scaphognathite rate 4.3.4 104 Anoxia tolerance 4.3.5 103 Oxyygen consumption, heart and scaphognathite rate during recovery 4.3.6 103 DISCUSSION . 4.4 104 Relationship between M 02 and body size . 4.4.1 105 Effect 01 temperature on Mo? 4.4.2 107 Effect of feeding on M 02 4.4.3 108 Effect of declimng oxygen tension 4.4.4 110 Oxygen debt 4.4.5 113 CHAPTER 5. RESPIRATORY PROPERTIES OF THE BLOOD INTRODUCTION 5.1 116 MATERIALS AND METHODS 5.2 117 Ionic composition of the blood 5.2.1 117 Lactate concentration of the blood 5.2.2 118 In vivo P02 and pH of the blood 5.2.3 118 Oxygen carrying capacity of the blood 5.2.4 119 Oxygen affinity of the haemocyanin 5.2.5 122 Carbon dioxide equilibrium curves 5.2.6 123 RESULTS 5.3 126 Ionic composition of the blood 5.3.1 126 P02, pH, and oxygen carrying capacity of the blood 5.3.2 126 O9 dissociation curves 5.33 127 CO2 equilibrium curves 5.3.4 129 DISCUSSION 5.4 130 Ionic composition of the blood 5.4.1 130 Oxygen carrying capacity of the blood 5.4.2 131 In vivo blood pH and P 02 5.4.3 133 O2 affinity of the blood 5.4.4 134 CO2 transport and acid-base balance 5.4.5 139 CHAPTER £. GENERAL DISCUSSION 142 REFERENCES 147 V ABSTRACT. The thesis presents a comparative study of respiratory physiology of the galatheids Munida rugosa (Fabricius, 1775) and M. sarsi Huus, 1935. Both species were obtained from the Firth of Clyde, M. rugosa from a depth range of 8-115m and M. sarsi from 95-115m depth. To provide background information for this study, some aspects of the general biology of both species were studied, with greatest emphasis given to M. rugosa. Both species were collected mainly from sandy muds using creels and trawls. Studies of relative growth were carried out and indicated that sexual differences were particularly apparent in cheliped lengths (positive allometry in males) and abdomen widths (positive allometry in females). Heterochely was observed in both species and, although there was much variation, it was more commonly seen in large males. Extrapolation of relative growth regression relationships for males and females suggested that, in M. rugosa, sexual maturity occurs at approximately 17mm carapace length and at approximately 10mm carapace length in M sarsi. Preliminary studies on the reproductive cycle of M. rugosa indicated that ovary development occurred between spring and autumn.
Recommended publications
  • A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet
    A Year in Hypoxia: Epibenthic Community Responses to Severe Oxygen Deficit at a Subsea Observatory in a Coastal Inlet Marjolaine Matabos1,2*, Verena Tunnicliffe1,3, S. Kim Juniper1,2, Courtney Dean1 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada, 2 NEPTUNE Canada, University of Victoria, Victoria, BC, Canada, 3 VENUS, University of Victoria, Victoria, BC, Canada Abstract Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m2 area were taken with a remotely-controlled still camera every 2/3 days between October 6th 2009 and October 18th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1–1.27 ml/l) and its high variability on short time-scale (hours) varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m22) despite oxygen below 0.2 ml/l.
    [Show full text]
  • (Eledone Cirrhosa) in Atlantic Iberian Waters
    Manuscript + Figure captions Click here to download Manuscript Eledone cirrhosa diet.docx Click here to view linked References 1 Factors affecting the feeding patterns of the horned octopus ( Eledone 2 cirrhosa ) in Atlantic Iberian waters 3 4 M. Regueira 1,2* , Á.Guerra 1, C.M. Fernández-Jardón 3,Á.F. González 1 5 6 1Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain. 7 2Departamento de Biologia, Universidade de Aveiro. 3810-193 Aveiro, Portugal. 8 3Facultad de Ciencias Económicas y Empresariales, Departamento de Economía Aplicada, Universidad 9 de Vigo, Campus de Vigo. 36310, Vigo, Spain. 10 11 12 *Corresponding author: [email protected] 13 Tel. (+34) 986 23 19 30 14 Fax. (+34) 986 29 27 62 15 16 17 RUNNING TITLE: Feeding patterns of Eledone cirrhosa 18 KEY WORDS: Cephalopods, Eledone cirrhosa , diet, feeding patterns, Atlantic Iberian waters, 19 Multinomial Logistic Regression. 1 20 Abstract The present study combines morphological and molecular analysis of stomach contents 21 (n=2,355) and Multinomial Logistic Regression (MLR) to understand the diet and feeding patterns of the 22 horned octopus Eledone cirrhosa inhabiting Atlantic Iberian waters. Specimens were collected monthly 23 from commercial bottom trawl fisheries between February 2009 and February 2011 in three fishing 24 grounds (North Galicia, West Galicia and North Portugal), located between 40.6 -43. 6°N and 8.6 -7.36°W. 25 Based on stomach analysis, horned octopuses in the region consumed mainly crustaceans, followed by 26 teleost fish, echinoderms, molluscs and polychaetes. Molecular analysis of 14 stomach contents 27 confirmed the visual identification of pre y items as well as cannibalistic events.
    [Show full text]
  • Proceedings of the United States National Museum
    descriptions of a new genus and forty-six new spp:cies of crusta(jeans of the family GALA- theid.e, with a list of the known marine SPECIES. By James E. Benedict, Assistant Curator of Marine Invertebrates. The collection of Galatheids in the United States National Museum, upon which this paper is based, began with the first dredgings of the U. S. Fish Commission steamer Albatross in 1883, and has grown as that busy ship has had opportunit}' to dredge. During the first period of its work many of the species taken were identical with those found by the U. S. Coast Survey steamer JBlake, afterwards described by A. Milne-Edwards, and in addition several new species were collected. During the voyage of the Albatross to the Pacific Ocean through the Straits of Magellan interesting addi- tions were made to the collection. Since then the greater part of the time spent by the Albatross at sea has been in Alaskan waters, where Galatheids do not seem to abound. However, occasional cruises else- where have greatly enriched the collection, notably three—one in the Gulf of California, one to the Galapagos Islands, and one to the coast of Japan and southward. The U. S. National Museum has received a number of specimens from the Museum of Natural History, Paris, and also from the Indian Museum, Calcutta. The literature of the deep-sea Galatheidie from the nature of the case is not greatly scattered. The first considerate number of species were described by A. Milne-Edwards from dredgings made by the Blake in the West Indian region.
    [Show full text]
  • Two New Paleogene Species of Mud Shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America
    Bulletin of the Mizunami Fossil Museum, no. 33 (2006), p. 77–85, 2 pls., 1 fig. © 2006, Mizunami Fossil Museum Two new Paleogene species of mud shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America Rene H. B. Fraaije1, Barry W. M. van Bakel1, John W. M. Jagt2, and Yvonne Coole3 1Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands <[email protected]> 2Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands <[email protected]> 3St. Maartenslaan 88, NL-6039 BM Stramproy, the Netherlands Abstract Two new species of the mud shrimp genus Upogebia (Callianassoidea, Upogebiidae) are described; U. lambrechtsi sp. nov. from the lower Eocene (Ypresian) of Egem (northwest Belgium), and U. barti sp. nov. from the upper Oligocene (Chattian) of Washington State (USA). Both new species here described have been collected from small, ball-shaped nodules; they are relatively well preserved and add important new data on the palaeobiogeographic distribution of fossil upogebiids. Key words: Crustacea, Decapoda, Upogebiidae, Eocene, Oligocene, Belgium, USA, new species Introduction Jurassic species of Upogebia have been recorded, in stratigraphic order: On modern tidal flats, burrowing upogebiid shrimps constitute the dominant decapod crustacean group. For instance, in the 1 – Upogebia rhacheochir Stenzel, 1945 (p. 432, text-fig. 12; pl. intertidal zone of the northern Adriatic (Mediterranean, southern 42); Britton Formation (Eagle Ford Group), northwest of Dallas Europe) up to 200 individuals per square metre have been recorded (Texas, USA). Stenzel (1945, p. 408) dated the Britton (Dworschak, 1987). Worldwide, several dozens of species of Formation as early Turonian, but a late Cenomanian age is Upogebia and related genera are known, and their number is still more likely (compare Jacobs et al., 2005).
    [Show full text]
  • Taxonomy, Biology and Distribution of Lobsters
    Taxonomy, Biology and Distribution of Lobsters 15 Rekha Devi Chakraborty and E.V.Radhakrishnan Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Kochi-682 018 Lobsters are among the most prized of fisheries resources and of significant commercial interest in many countries. Because of their high value and esteemed culinary worth, much attention has been paid to lobsters in biological, fisheries, and systematic literature. They have a great demand in the domestic market as a delicacy and is a foreign exchange earner for the country. Taxonomic status Phylum: Arthropoda Subphylum: Crustacea Class: Malacostraca Subclass: Eumalacostraca Superorder: Eucarida Order: Decapoda Suborder: Macrura Reptantia The suborder Macrura Reptantia consists of three infraorders: Astacidea (Marine lobsters and freshwater crayfishes), Palinuridea (Spiny lobsters and slipper lobsters) and Thalassinidea (mud lobsters). The infraorder Astacidea Summer School on Recent Advances in Marine Biodiversity Conservation and Management 100 Rekha Devi Chakraborty and E.V.Radhakrishnan contains three superfamilies of which only one (the Infraorder Palinuridea, Superfamily Eryonoidea, Family Nephropoidea) is considered here. The remaining two Polychelidae superfamilies (Astacoidea and parastacoidea) contain the 1b. Third pereiopod never with a true chela,in most groups freshwater crayfishes. The superfamily Nephropoidea (40 chelae also absent from first and second pereiopods species) consists almost entirely of commercial or potentially 3a Antennal flagellum reduced to a single broad and flat commercial species. segment, similar to the other antennal segments ..... Infraorder Palinuridea, Superfamily Palinuroidea, The infraorder Palinuridea also contains three superfamilies Family Scyllaridae (Eryonoidea, Glypheoidea and Palinuroidea) all of which are 3b Antennal flagellum long, multi-articulate, flexible, whip- marine. The Eryonoidea are deepwater species of insignificant like, or more rigid commercial interest.
    [Show full text]
  • California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
    California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis
    [Show full text]
  • Aurinete Oliv Diversidade Das Lagostas Anom Munidopsidae) Da
    Universidade Federal de Pernambuco – UFPE Centro de Tecnologia e Geociência – CTG Departam ento de Oceanografia – DOCEAN Programa de Pós -Graduação em Oceanografia - PPGO Aurinete Oliveira Negromonte Diversidade das lagostas Anomura (Chirostylid ae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do B rasil e biologia populacional das espécies Munida iris A. Milne-Edwards, 1880 e Agononida longipes (A. Milne-Edwards, 1880) Recife 2015 Aurinete Oliveira Negromonte Diversidade das lagostas Anomura (Chirostylidae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do Brasil e biologia populacional das espécies Munida iris A. Milne-Edwards, 1880 e Agononida longipes (A. Milne-Edwards, 1880) Dissertação apresentada ao Programa de Pós- Graduação em Oceanografia da Universidade Federal de Pernambuco (PPGO-UFPE), como um dos requisitos para a obtenção do título de Mestre em Oceanografia, Área de concentração: Oceanografia Biológica. Orientador: Jesser Fidelis de Souza Filho Recife 2015 M393d Negromonte , Aurinete Oliveira . Diversidade das lagostas Anomura (Chirostylidae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do Brasil e biologia populacional das espécies Munida íris A. Milne-Edwards, 1880 e Agononida longipes (A. Milne-Edwards, 1880). / Felipe B. Rafael Brasiliano Cavalcante - Recife: O Autor, 2015. 88 folhas. Il., e Tabs. Orientador: Profº. Dr. Jesser Fidelis de Souza Filho. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós- Graduação em Oceanografia, 2015. Inclui Referências. 1. Oceonografia. 2. Mar profundo. 3. Estudo populacional. 4. Galateídeos. I. Souza Filho, Jesser Fidelis de. (Orientador). II. Título. UFPE 551.46 CDD (22. ed.) BCTG/2015 - 155 Universidade Federal de Pernambuco – UFPE Centro de Tecnologia e Geociência – CTG Departamento de Oceanografia – DOCEAN Programa de Pós-Graduação em Oceanografia - PPGO Aurinete Oliveira Negromonte Diversidade das lagostas Anomura (Chirostylidae, Munididae e Munidopsidae) da Bacia Potiguar, Nordeste do Brasil e biologia populacional das espécies Munida iris A.
    [Show full text]
  • Biology of Mediterranean and Caribbean Thalassinidea (Decapoda)
    Biology of Mediterranean and Caribbean Thalassinidea (Decapoda) Peter C. DWORSCHAK Dritte Zoologische Abteilung, Naturhistorisches Museum, Burgring 7, A 1014 Wien, Austria ([email protected]) Abstract Among burrowing organisms, the most complex and extensive burrow systems are found within the Thalassinidea. This group of decapods comprises some 520+ species in currently 11 families and 80+ genera. They live predominantly in very shallow waters, where they often occur in high densities and influence the whole sedimentology and geochemistry of the seabed. In this contribution I present results of studies on the biology of several Mediterranean (Upogebia pusilla, U. tipica, Pestarella tyrrhena, P. candida, Jaxea nocturna) and Caribbean (Axiopsis serratifrons, Neocallichirus grandimana, Glypturus acanthochirus, Corallianassa longiventris) species. Of special interest is the occurrence of debris-filled chambers in the burrows of two callianassid species, Pestarella tyrrhena and Corallianassa longiventris. The possible role of this introduced plant material for the nutrition of the shrimps is discussed. 1. Introduction The Thalassinidea are a group of mainly burrowing decapod shrimps. They have attracted increased attention in recent ecological studies on marine soft-bottom benthos, especially in terms of their influence on the whole sedimentology and geochemistry of the seabed (Ziebis et al., 1996a, b), their bioturbating activities (Rowden & Jones, 1993; Rowden et al., 1998a, b) and consequent effects on benthic community structure (Posey, 1986; Posey et al., 1991; Wynberg & Branch, 1994; Tamaki, 1994). They are of particular interest because they construct very complex and extensive burrow systems (Griffis & Suchanek, 1991; Nickell & Atkinson, 1995). This group of decapods comprises some 520+ species in currently 11 families and 80+ genera.
    [Show full text]
  • Approaching Marine Biodiversity Assessments Using Acoustic Methods
    Listening forward: approaching marine royalsocietypublishing.org/journal/rsos biodiversity assessments using acoustic methods Review Cite this article: Mooney TA, Iorio LD, Lammers T. Aran Mooney1, Lucia Di Iorio2, Marc Lammers3, M, Lin T-H, Nedelec SL, Parsons M, Radford C, 4 5 6 Urban E, Stanley J. 2020 Listening forward: Tzu-Hao Lin , Sophie L. Nedelec , Miles Parsons , approaching marine biodiversity assessments Craig Radford7, Ed Urban8 and Jenni Stanley1 using acoustic methods. R. Soc. Open Sci. 7: 201287. 1Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, http://dx.doi.org/10.1098/rsos.201287 Woods Hole, MA 02543, USA 2CHORUS Institute, Phelma Minatec, 3 parvis Louis Néel, 38000 Grenoble, France 3Hawaiian Islands Humpback Whale National Marine Sanctuary, 726 South Kihei Road, Kihei, HI 96753, USA 4Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Received: 20 July 2020 Taipei 11529, Taiwan Accepted: 5 August 2020 5Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK 6Australian Institute of Marine Science, Perth, Western Australia 6009, Australia 7Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand Subject Category: 8Scientific Committee on Oceanic Research, University of Delaware, Newark, DE 19716, USA Organismal and Evolutionary Biology TAM, 0000-0002-5098-3354 Subject Areas: Ecosystems and the communities they
    [Show full text]
  • Review of the Biology, Ecology and Fisheries of Palinurus Spp. Species
    Cah. Biol. Mar. (2005) 46 : 127-142 Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911) Raquel GOÑI1 and Daniel LATROUITE2 (1) Centro Oceanográfico de Baleares – Instituto Español de Oceanografía. Muelle de Poniente s/n, 07080 Palma de Mallorca, Spain. Fax: 34 971 404945. E-mail: [email protected] (2) IFREMER, Centre de Brest, BP 70, 29280 Plouzané cedex, France. Fax 33 (0)2 98 22 46 53. E-mail: [email protected] Abstract: Palinurus elephas and Palinurus mauritanicus are the only species of the family Palinuridae that occur in the Northeast Atlantic and Mediterranean. Of the two, Palinurus elephas is the most abundant and accessible and has traditionally been the preferred target of lobster fisheries throughout its range. Palinurus mauritanicus has a deeper distri- bution and has been an important target of fisheries mainly in the Central Eastern Atlantic. The high unit value and the rel- ative scarcity of these species have been important obstacles to research and knowledge of their biology, ecology and fish- eries is limited. Nevertheless, over time a considerable number of studies has been conducted, though most of these are contained in university theses or in publications of limited circulation. This review is an up-to-date overview of available knowledge on the biology, ecology and fisheries of the two spiny lobster species of European waters. Résumé : Une revue sur la biologie, l’écologie et les pêcheries des espèces de Palinurus des eaux européennes : Palinurus elephas (Fabricius, 1787) et Palinurus mauritanicus (Gruvel, 1911).
    [Show full text]
  • Developmental Changes in the Mouthparts of Juvenile Caribbean Spiny Lobster, Panulirus Argus: Implications for Aquaculture
    FAD LIBRARIES Florida Atlantic University HARBOR BRANCH ~ FLORIDA ATLANTIC UNIVERSITY FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2008 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00448486. This article may be cited as: Cox, S. L., Jeffs, A. G., & Davis, M. (2008). Developmental changes in the mouthparts of juvenile Caribbean spiny lobster, Panulirus argus: Implications for aquaculture. Aquaculture, 283(1‐4), 168‐174. doi:10.1016/j.aquaculture.2008.07.019 Aquaculture 283 (2008) 168–174 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Developmental changes in the mouthparts of juvenile Caribbean spiny lobster, Panulirus argus: Implications for aquaculture Serena L. Cox a,b,⁎, Andrew G. Jeffs c, Megan Davis a a Aquaculture Division, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, USA b National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand c Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand article info abstract Article history: Light microscopy and video analysis were used to examine the mouthpart morphology and feeding Received 5 May 2008 behaviour of the Caribbean spiny lobster from puerulus (megalopal stage) (5–8 mm carapace length, CL) to Received in revised form 14 July 2008 adult (85 mm CL). Upon settlement the pueruli did not possess fully functional mouthparts, however, Accepted 14 July 2008 efficient feeding appendages appeared in the first instar juvenile (after the first moult from puerulus).
    [Show full text]
  • Comparative Aspects of the Control of Posture and Locomotion in The
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata Andres Gabriel Vidal Gadea Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Vidal Gadea, Andres Gabriel, "Comparative aspects of the control of posture and locomotion in the spider crab Libinia emarginata" (2008). LSU Doctoral Dissertations. 3617. https://digitalcommons.lsu.edu/gradschool_dissertations/3617 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. COMPARATIVE ASPECTS OF THE CONTROL OF POSTURE AND LOCOMOTION IN THE SPIDER CRAB LIBINIA EMARGINATA A Dissertation Submitted to the Graduate Faculty of Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Andrés Gabriel Vidal Gadea B.S. University of Victoria, 2003 May 2008 For Elsa and Roméo ii ACKNOWLEDGEMENTS The journey that culminates as I begin to write these lines encompassed multiple countries, languages and experiences. Glancing back at it, a common denominator constantly appears time and time again. This is the many people that I had the great fortune to meet, and that many times directly or indirectly provided me with the necessary support allowing me to be here today.
    [Show full text]