Gastropoda Pulmonata: Buliminidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arianta 6, 2018
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2018 Band/Volume: 6 Autor(en)/Author(s): diverse Artikel/Article: Abstracts Talks Alpine and other land snails 11-27 ARIANTA 6 and correspond ecologically. For instance, the common redstart is a bird species breeding in the lowlands, whereas the black redstart is native to higher altitudes. Some species such as common swift and kestrel, which are originally adapted to enduring in rocky areas, even found a secondary habitat in the house facades and street canyons of towns and big cities. Classic rock dwellers include peregrine, eagle owl, rockthrush, snowfinch and alpine swift. The presentation focuses on the biology, causes of threat as well as conservation measures taken by the national park concerning the species golden eagle, wallcreeper, crag martin and ptarmigan. Birds breeding in the rocks might not be that high in number, but their survival is all the more fascinating and worth protecting as such! Abstracts Talks Alpine and other land snails Arranged in chronological order of the program Rangeconstrained cooccurrence simulation reveals little niche partitioning among rockdwelling Montenegrina land snails (Gastropoda: Clausiliidae) Zoltán Fehér1,2,3, Katharina JakschMason1,2,4, Miklós Szekeres5, Elisabeth Haring1,4, Sonja Bamberger1, Barna PállGergely6, Péter Sólymos7 1 Central Research Laboratories, Natural History Museum Vienna, Austria; [email protected] -
Predatory Poiretia (Stylommatophora, Oleacinidae) Snails: Histology and Observations
Vita Malacologica 13: 35-48 20 December 2015 Predatory Poiretia (Stylommatophora, Oleacinidae) snails: histology and observations Renate A. HELWERDA Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands email: [email protected] Key words: Predation, predatory snails, drilling holes, radula, pedal gland, sole gland, acidic mucus ABSTRACT The Mediterranean species occur in rather dry, often rocky habitats, which are openly to sparsely vegetated. The predatory behaviour of Poiretia snails is studied. One However, they also occur in anthropogenically affected areas aspect of this behaviour is the ability to make holes in the such as gardens and parks (Kittel, 1997). The snails are main - shells of prey snails. The radula and the histology of the ly active at night and are hidden away under rocks and leaf mucous glands support the assumption that Poiretia secretes litter during the day, although they can also be found crawling acidic mucus to produce these holes. Observation of a around during daytime if the weather is rainy or cloudy and Poiretia compressa (Mousson, 1859) specimen yielded the moist (Wagner, 1952; Maassen, 1977; Kittel, 1997). During insight that its activities relied on the availability of moisture the hot summer months, Poiretia snails aestivate by burying and not on light conditions. It preyed on a wide range of snail themselves in soil or under rocks and sealing their apertures species, but only produced holes in shells when the aperture with an epiphragm (Kittel, 1997). was blocked. It usually stabbed its prey with a quick motion Poiretia snails prey on a wide variety of pulmonate snails. -
Gastropoda, Pleuroceridae), with Implications for Pleurocerid Conservation
Zoosyst. Evol. 93 (2) 2017, 437–449 | DOI 10.3897/zse.93.14856 museum für naturkunde Genetic structuring in the Pyramid Elimia, Elimia potosiensis (Gastropoda, Pleuroceridae), with implications for pleurocerid conservation Russell L. Minton1, Bethany L. McGregor2, David M. Hayes3, Christopher Paight4, Kentaro Inoue5 1 Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA 2 Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, Florida 32962 USA 3 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA 4 Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881 USA 5 Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, 2260 TAMU, College Station, Texas 77843 USA http://zoobank.org/E6997CB6-F054-4563-8C57-6C0926855053 Corresponding author: Russell L. Minton ([email protected]) Abstract Received 7 July 2017 The Interior Highlands, in southern North America, possesses a distinct fauna with nu- Accepted 19 September 2017 merous endemic species. Many freshwater taxa from this area exhibit genetic structuring Published 15 November 2017 consistent with biogeography, but this notion has not been explored in freshwater snails. Using mitochondrial 16S DNA sequences and ISSRs, we aimed to examine genetic struc- Academic editor: turing in the Pyramid Elimia, Elimia potosiensis, at various geographic scales. On a broad Matthias Glaubrecht scale, maximum likelihood and network analyses of 16S data revealed a high diversity of mitotypes lacking biogeographic patterns across the range of E. -
The Land Snails of Lichadonisia Islets (Greece)
Ecologica Montenegrina 39: 59-68 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.39.6 The land snails of Lichadonisia islets (Greece) GALATEA GOUDELI1*, ARISTEIDIS PARMAKELIS1, KONSTANTINOS PROIOS1, IOANNIS ANASTASIOU2, CANELLA RADEA1, PANAYIOTIS PAFILIS2, 3 & KOSTAS A. TRIANTIS1,4* 1Section of Ecology and Taxonomy, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece Emails: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece Emails: [email protected]; [email protected] 3Zoological Museum, National and Kapodistrian University of Athens, 15784 Athens, Greece 4Natural Environment and Climate Change Agency, Villa Kazouli, 14561 Athens, Greece *Corresponding authors Received 12 January 2021 │ Accepted by V. Pešić: 30 January 2021 │ Published online 8 February 2021. Abstract The Lichadonisia island group is located between Maliakos and the North Evian Gulf, in central Greece. Lichadonisia is one of the few volcanic island groups of Greece, consisting mainly of lava flows. Today the islands are uninhabited with high numbers of visitors, but permanent population existed for many decades in the past. Herein, we present for the first time the land snail fauna of the islets and we compare their species richness with islands of similar size across the Aegean Sea. This group of small islands, provides a typical example on how human activities in the current geological era, i.e., the Anthropocene, alter the natural communities and differentiate biogeographical patterns. -
The Abundant Occurrence of the Three-Toothed Bulin Snail Chondrula Tridens (O
Przegląd Przyrodniczy XXVII, 2 (2016): 87-94 Joanna Przybylska, Andrzej Jermaczek LICZNE WYSTĘPOWANIE WAŁKÓWKI TRÓJZĘBNEJ CHONDRULA TRIDENS (O. F. MÜLLER, 1774) WZDŁUŻ LINII KOLEJOWEJ OLEŚNICA – GNIEZNO W WIELKOPOLSCE The abundant occurrence of the Three-toothed Bulin Snail Chondrula tridens (O. F. Müller, 1774) along the Oleśnica – Gniezno railway in Wielkopolska ABSTRAKT: W artykule scharakteryzowano stanowiska kserotermicznego ślimaka – wałkówki trój- zębnej Chondrula tridens (O. F. Müller, 1774) – zlokalizowane w siedliskach antropogenicznych na nasypach i w wykopach linii kolejowej Oleśnica – Gniezno (Wielkopolska). W 2015 roku gatunek stwierdzono na 13 stanowiskach na odcinku ok. 100 km pomiędzy Zdunami a Gnieznem. Niewielki udział dogodnych siedlisk naturalnych w otoczeniu linii wskazuje, że występowanie gatunku na przy- torzach jest prawdopodobnie efektem zawleczenia wraz z materiałami budowlanymi. Otwarte, suche i nasłonecznione siedliska wzdłuż linii kolejowej stanowią dogodne siedliska zastępcze tego zagrożone- go gatunku mięczaka. SŁOWA KLUCZOWE: wałkówka trójzębna, linie kolejowe, siedliska antropogeniczne ABSTRACT: The paper presents the sites of the Three-toothed Bulin Snail Chondrula tridens (O. F. Müller, 1774) localised in anthropogenic habitats on embankments and in excavations along the Oleś- nica – Gniezno railway (Wielkopolska). In 2015 the species was found in 13 localities on a 100 km long section of the railway between Zduny and Gniezno. As natural habitats of the species in the sur- roundings are scarce, it is probable that the snails were introduced to the sites with building materials. Open, dry, insulated grasslands along tracks are suitable alternative habitats for this endangered snail species. KEY WORDS: Three-toothed Bulin Snail, railways, anthropogenic habitats Wstęp dopodobną rolę takich siedlisk i związanej z ich kształtowaniem działalności człowieka w Celem artykułu jest wskazanie na liczne rozprzestrzenianiu się gatunku. -
Gastropoda Pulmonata: Buliminidae)
BASTERIA, 60: 9-11, 1996 The westernmost Turanena species: T. katerinae spec. nov. (Gastropoda Pulmonata: Buliminidae) E. Gittenberger Nationaal Natuurhistorisch Museum, P.O. Box 9517, NL 2300 RA Leiden, The Netherlands is it Turanena katerinae from western Crete described as new to science. Actually is the westernmost Turanena species known. Key words: Gastropoda, Pulmonata, Buliminidae, Turanena, taxonomy, Greece. In and the recent years our systematic biogeographical knowledge concerning genus Turanena increased considerably (see: Bank & Menkhorst, 1992; Gittenberger & it is Turanena from Menkhorst, 1993). Therefore, relatively easy to recognize a species to the island of Crete as both new science and biogeographically interesting because of its occurrence far to the west in the South Aegean island arc. The collection of the Nationaal Natuurhistorisch Museum (Leiden) is referred to as NNM. Turanena katerinae spec. nov. (fig- 4) Material.— Greece,Crete, Khania: 0.1-0.2 km NE. ofthe mountain cabin "Katifigio Kalergi" (= 4 km E. of 1600 altitude 56806/ Omalos) [UTM GE6715], below limestone cliffs, among a bushy vegetation, at m (NNM holotype [leg. 5.v. 1993], 56808/1 paratype [leg. 29.iii. 1989], and 56807/7 paratypes peg. 5.v.1993]); 6 km S. of Omalos, Gingolos Mtn. [UTM GE6509] (Colin. W.J.M. Maassen/1 paratype). Shell to about mm and 4 mm broad; its Diagnosis.-- corneous, up 7 high aperture without a reflected and/or prominently thickened lip. Description.— Shell conical, with 4 1/2 to 4 3/4 globular whorls. Umbilicus narrow. Teleoconch whorls with narrowly spaced, irregular riblets. Body whorl not ascending in front. Aperture measuring slightly over 40% of the total shell height. -
As Fast As a Hare: Colonization of the Heterobranch Aplysia Dactylomela (Mollusca: Gastropoda: Anaspidea) Into the Western Mediterranean Sea
Cah. Biol. Mar. (2017) 58 : 341-345 DOI: 10.21411/CBM.A.97547B71 As fast as a hare: colonization of the heterobranch Aplysia dactylomela (Mollusca: Gastropoda: Anaspidea) into the western Mediterranean Sea Juan MOLES1,2, Guillem MAS2, Irene FIGUEROA2, Robert FERNÁNDEZ-VILERT2, Xavier SALVADOR2 and Joan GIMÉNEZ2,3 (1) Department of Evolutionary Biology, Ecology, and Environmental Sciences and Biodiversity Research Institute (IrBIO), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Catalonia, Spain E-mail: [email protected] (2) Catalan Opisthobranch Research Group (GROC), Mas Castellar, 17773 Pontós, Catalonia, Spain (3) Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Americo Vespucio 26 Isla Cartuja, 42092 Seville, Andalucía, Spain Abstract: The marine cryptogenic species Aplysia dactylomela was recorded in the Mediterranean Sea in 2002 for the first time. Since then, this species has rapidly colonized the eastern Mediterranean, successfully establishing stable populations in the area. Aplysia dactylomela is a heterobranch mollusc found in the Atlantic Ocean, and commonly known as the spotted sea hare. This species is a voracious herbivorous with generalist feeding habits, possessing efficient chemical defence strategies. These facts probably promoted the acclimatation of this species in the Mediterranean ecosystems. Here, we report three new records of this species in the Balearic Islands and Catalan coast (NE Spain). This data was available due to the use of citizen science platforms such as GROC (Catalan Opisthobranch Research Group). These are the first records of this species in Spain and the third in the western Mediterranean Sea, thus reinforcing the efficient, fast, and progressive colonization ability of this sea hare. -
Malacologica
FOLIA Folia Malacol. 24(3): 111–177 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, September 2016 http://dx.doi.org/10.12657/folmal.024.008 PATTERNS OF SPATIO-TEMPORAL VARIATION IN LAND SNAILS: A MULTI-SCALE APPROACH SERGEY S. KRAMARENKO Mykolaiv National Agrarian University, Paryzka Komuna St. 9, Mykolaiv, 54020, Ukraine (e-mail: [email protected]) ABSTRACT: Mechanisms which govern patterns of intra-specific vatiation in land snails were traced within areas of different size, using Brephulopsis cylindrica (Menke), Chondrula tridens (O. F. Müller), Xeropicta derbentina (Krynicki), X. krynickii (Krynicki), Cepaea vindobonensis (Férussac) and Helix albescens Rossmässler as examples. Morphometric shell variation, colour and banding pattern polymorphism as well as genetic polymorphism (allozymes and RAPD markers) were studied. The results and literature data were analysed in an attempt to link patterns to processes, with the following conclusions. Formation of patterns of intra- specific variation (initial processes of microevolution) takes different course at three different spatial scales. At micro-geographical scale the dominant role is played by eco-demographic characteristics of the species in the context of fluctuating environmental factors. At meso-geographical scale a special part is played by stochastic population-genetic processes. At macro-geographical scale more or less distinct clinal patterns are associated with basic macroclimatic -
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers .................................................................................. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): a Synthesis from Original and Literature Data
animals Article Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): A Synthesis from Original and Literature Data Agnese Petraccioli 1, Paolo Crovato 2, Fabio Maria Guarino 1 , Marcello Mezzasalma 1,3,* , Gaetano Odierna 1,* , Orfeo Picariello 1 and Nicola Maio 1 1 Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; [email protected] (A.P.); [email protected] (F.M.G.); [email protected] (O.P.); [email protected] (N.M.) 2 Società Italiana di Malacologia, Via Mezzocannone, 8-80134 Naples, Italy; [email protected] 3 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal * Correspondence: [email protected] (M.M.); [email protected] (G.O.) Simple Summary: The superfamily Helicoidea is a large and diverse group of Eupulmonata. The su- perfamily has been the subject of several molecular and phylogenetic studies which greatly improved our knowledge on the evolutionary relationships and historical biogeography of many families. In contrast, the available karyological information on Helicoidea still results in an obscure general picture, lacking a homogeneous methodological approach and a consistent taxonomic record. Never- theless, the available karyological information highlights the occurrence of a significant chromosomal diversity in the superfamily in terms of chromosome number (varying from 2n = 40 to 2n = 62), Citation: Petraccioli, A.; Crovato, P.; chromosome morphology and the distribution of different karyological features among different Guarino, F.M.; Mezzasalma, M.; taxonomic groups. Here we performed a molecular and a comparative cytogenetic analysis on of Odierna, G.; Picariello, O.; Maio, N. -
European Red List of Non-Marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert
European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission. This publication has been prepared by IUCN (International Union for Conservation of Nature) and the Natural History of Bern, Switzerland. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, the Natural History Museum of Bern or the European Union concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, the Natural History Museum of Bern or the European Commission. Citation: Cuttelod, A., Seddon, M. and Neubert, E. 2011. European Red List of Non-marine Molluscs. Luxembourg: Publications Office of the European Union. Design & Layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: The rare “Hélice catalorzu” Tacheocampylaea acropachia acropachia is endemic to the southern half of Corsica and is considered as Endangered. Its populations are very scattered and poor in individuals. This picture was taken in the Forêt de Muracciole in Central Corsica, an occurrence which was known since the end of the 19th century, but was completely destroyed by a heavy man-made forest fire in 2000.