WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Family: Cupressaceae Taxon: Juniperus bermudiana Synonym: Juniperus virginiana var. bermudiana (L.) Va Common Name: Bemuda juniper Sabina bermudiana (L.) Antoine Bermuda cedar Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 7 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 n 411 Climbing or smothering growth habit y=1, n=0 n Print Date: 8/8/2012 Juniperus bermudiana (Cupressaceae) Page 1 of 10 412 Forms dense thickets y=1, n=0 y 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 y 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 y 604 Self-compatible or apomictic y=1, n=-1 n 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, >3 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 n areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 n 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) y=1, n=-1 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) y=1, n=-1 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 803 Well controlled by herbicides y=-1, n=1 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 n Designation: H(HPWRA) WRA Score 7 Print Date: 8/8/2012 Juniperus bermudiana (Cupressaceae) Page 2 of 10 Supporting Data: 101 1989. Little Jr., E.L./Skolmen, R.G.. Common [Is the species highly domesticated? No evidence] forest trees of Hawaii: (native and introduced). USDA Agriculture Handbook No. 679. USDA Forest Service, Washington, D.C. 101 2008. Louppe, D./Oteng-Amoako, A.A./Brink, M.. [Is the species highly domesticated? No evidence] Timbers 1: volume 7 of Plant Resources of Tropical Africa. PROTA, Wageningen, Netherlands 102 2012. WRA Specialist. Personal Communication. NA 103 2012. WRA Specialist. Personal Communication. NA 201 1989. Little Jr., E.L./Skolmen, R.G.. Common [Species suited to tropical or subtropical climate(s) 2-High] "Native only to the forest trees of Hawaii: (native and introduced). island of Bermuda. Formerly abundant there, but now rare because of a disease USDA Agriculture Handbook No. 679. USDA as well as cutting." Forest Service, Washington, D.C. 202 1989. Little Jr., E.L./Skolmen, R.G.. Common [Quality of climate match data 2-High] forest trees of Hawaii: (native and introduced). USDA Agriculture Handbook No. 679. USDA Forest Service, Washington, D.C. 203 1989. Little Jr., E.L./Skolmen, R.G.. Common [Broad climate suitability (environmental versatility)? No] "This subtropical forest trees of Hawaii: (native and introduced). species is not hardy northward in temperate regions." USDA Agriculture Handbook No. 679. USDA Forest Service, Washington, D.C. 203 2008. Louppe, D./Oteng-Amoako, A.A./Brink, M.. [Broad climate suitability (environmental versatility)? No] "In Bermuda Juniperus Timbers 1: volume 7 of Plant Resources of bermudiana occurs near sea-level, on sandy soils and limestone rocks." Tropical Africa. PROTA, Wageningen, Netherlands 204 1989. Little Jr., E.L./Skolmen, R.G.. Common [Native or naturalized in regions with tropical or subtropical climates? Yes] "This forest trees of Hawaii: (native and introduced). subtropical species is not hardy northward in temperate regions." USDA Agriculture Handbook No. 679. USDA Forest Service, Washington, D.C. 205 1989. Little Jr., E.L./Skolmen, R.G.. Common [Does the species have a history of repeated introductions outside its natural forest trees of Hawaii: (native and introduced). range?? Hawaiian Islands] "In Hawaii, Bermuda juniper is grown as an USDA Agriculture Handbook No. 679. USDA ornamental and in hedges. It is also planted in the Forest Reserves on a small Forest Service, Washington, D.C. scale. Between 1921 and 1953, 6500 trees were planted in the forests on all islands. Examples may be seen at Waiahole, Oahu, Waiahou Spring Reserve (Olinda), Maui, and Pepeekeo Arboretum, Hawaii." 205 2008. Louppe, D./Oteng-Amoako, A.A./Brink, M.. [Does the species have a history of repeated introductions outside its natural Timbers 1: volume 7 of Plant Resources of range? Yes] "Juniperus bermudiana originates from Bermuda and is occasionally Tropical Africa. PROTA, Wageningen, grown elsewhere, e.g. in the Mascarene islands. It is fairly often planted in Netherlands Reunion and Mauritius, somewhat less often in Rodrigues; it has sometimes become naturalized." 301 2000. Kendle, A.D./Rose, J.E.. The aliens have [Naturalized beyond native range? Yes] "It is, however, worth balancing this point landed! What are the justifications for `native with a recognition that from a global perspective non-natives may represent a only' policies in landscape plantings?. Landscape resource of genetic diversity that has been lost or suffered massive depletion in and Urban Planning. 47: 19-31. its country of origin. One example is the Bermuda Cedar (Juniperus bermudiana), which is a self regenerating timber tree in St Helena but is a threatened species in Bermuda (Spooner et al., 1993)." 301 2004. Richardson, D.M./Rejmánek, M.. Conifers [Naturalized beyond native range? Yes] "Appendix List of naturalized or invasive as invasive aliens: a global survey and predictive (in bold) conifers (Pinopsida), based on hundreds of published and unpublished framework. Diversity and Distributions. 10: sources and the unpublished data and personal observation of the authors over 321–331. more than a decade." … "Juniperus bermudiana (Hawaii; St Helena)" [Listed as invasive in Hawaii and St. Helena] 301 2005. Wagner, W.L./Herbst, D.R./Lorence, D.H.. [Naturalized beyond native range? Yes] "Juniperus bermudiana L. Status: Flora of the Hawaiian Islands website. Naturalized Distribution: L/ WM (Mahinahina Gulch)" Smithsonian Inst., Washington, D.C. http://botany.si.edu/pacificislandbiodiversity/hawai ianflora/index.htm Print Date: 8/8/2012 Juniperus bermudiana (Cupressaceae) Page 3 of 10 301 2008. Woo, E.. The Role of Plant-Bird [Naturalized beyond native range? Yes] "J. bermudiana is also known to be Interactions in the Invasion of Juniperus invasive on the mid-Atlantic island of St. Helena where it was introduced in the bermudiana in Hawaii: Integrating Experiments, 1930s (Ashmole and Ashmole 2000). " Behavior, and Models. PhD Dissertation. Stony Brook University, Stony Brook, NY 301 2009. McWilliams, J.P.. Implications of climate [Naturalized beyond native range? Yes] "The Bermuda cedar, Juniperus change for biodiversity in the UK Overseas bermudiana, naturally endemic to Bermuda, is now slowly spreading in some Territories. JNCC Report, No. 427. Joint Nature parts of Ascension." Conservation Committee, Peterborough 302 2003. The Nature Conservancy - Hawaii [Garden/amenity/disturbance weed? Potential environmental weed] "TABLE 1: Operating Unit. Kapunakea Preserve West Maui, Priority Weed Species in Kapunakea Preserve" … "Other Important Pest Hawaii. Long-Range Management Plan Fiscal Species:" [List includes Juniperus bermudiana] Years 2004-2009. 2nd Revision. 302 2008. Stow, S.J.C.. Non-native plant distribution [Garden/amenity/disturbance weed? Disturbance adapted] "Native species may in Montserrat: Conservation and Ecological become invasive if conditions change as in the case of the endemic Bermuda aspects. MSc Thesis. Imperial College of cedar (Juniperus bermudiana) which was able to spread across Bermuda after London, London, UK humans arrived and caused mass deforestation (Kairo et al., 2003)." 302 2008.
Recommended publications
  • Letter from the Desk of David Challinor August 2001 About 1,000
    Letter From the Desk of David Challinor August 2001 About 1,000 miles west of the mid-Atlantic Ridge at latitude 32°20' north (roughly Charleston, SC), lies a small, isolated archipelago some 600 miles off the US coast. Bermuda is the only portion of a large, relatively shallow area or bank that reaches the surface. This bank intrudes into the much deeper Northwestern Atlantic Basin, an oceanic depression averaging some 6,000 m deep. A few kilometers off Bermuda's south shore, the depth of the ocean slopes precipitously to several hundred meters. Bermuda's geographic isolation has caused many endemic plants to evolve independently from their close relatives on the US mainland. This month's letter will continue the theme of last month's about Iceland and will illustrate the joys and rewards of longevity that enable us to witness what appears to be the beginnings of landscape changes. In the case of Bermuda, I have watched for more than 40 years a scientist trying to encourage an endemic tree's resistance to an introduced pathogen. My first Bermuda visit was in the spring of 1931. At that time the archipelago was covered with Bermuda cedar ( Juniperus bermudiana ). This endemic species was extraordinarily well adapted to the limestone soil and sank its roots deep into crevices of the atoll's coral rock foundation. The juniper's relatively low height, (it grows only 50' high in sheltered locations), protected it from "blow down," a frequent risk to trees in this hurricane-prone area. Juniper regenerated easily and its wood was used in construction, furniture, and for centuries in local boat building.
    [Show full text]
  • Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
    MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Polyploidy in the Conifer Genus Juniperus: an Unexpectedly High Rate
    ORIGINAL RESEARCH published: 22 May 2019 doi: 10.3389/fpls.2019.00676 Polyploidy in the Conifer Genus Juniperus: An Unexpectedly High Rate Perla Farhat 1,2, Oriane Hidalgo 3,4, Thierry Robert 2,5, Sonja Siljak-Yakovlev 2, Ilia J. Leitch 3, Robert P. Adams 6 and Magda Bou Dagher-Kharrat 1* 1 Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Université Saint-Joseph, Campus Sciences et Technologies, Beirut, Lebanon, 2 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France, 3 Royal Botanic Gardens Kew, Richmond, United Kingdom, 4 Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Unitat Associada CSIC, Barcelona, Spain, 5 Biology Department, Sorbonne Université, Paris, France, 6 Biology Department, Baylor University, Waco, TX, United States Recent research suggests that the frequency of polyploidy may have been underestimated in gymnosperms. One notable example is in the conifer genus Juniperus, where there are already a few reports of polyploids although data are still missing for most species. In this study, we evaluated the extent of polyploidy in Juniperus by conducting the first comprehensive screen across nearly all of the genus. Genome size data from fresh material, together with chromosome counts, were used to demonstrate that genome sizes estimated from dried material could be used as reliable proxies to uncover Edited by: the extent of ploidy diversity across the genus. Our analysis revealed that 16 Juniperus Michael R. McKain, University of Alabama, United States taxa were polyploid, with tetraploids and one hexaploid being reported. Furthermore, by Reviewed by: analyzing the genome size and chromosome data within a phylogenetic framework we Dirk Carl Albach, provide the first evidence of possible lineage-specific polyploidizations within the genus.
    [Show full text]
  • Rare and Endangered
    AMERICAN CONIFER SOCIETY coniferQUARTERLY PAGE 13 Rare and Endangered SAVE THE DATES: The American Conifer Society National Meeting June 14 - 17, 2018 Summer 2017 Volume 34, Number 3 CONIFERQUARTERLY (ISSN 8755-0490) is published quarterly by the American Conifer Society. The Society is a non-profit organization incorporated under the laws of the CONIFER Commonwealth of Pennsylvania and is tax exempt under section 501(c)3 of the Internal Revenue Service Code. QUARTERLY You are invited to join our Society. Please address Editor membership and other inquiries to the American Conifer Society National Office, PO Box 1583, Minneapolis, MN Ronald J. Elardo 55311, [email protected]. Membership: US & Canada $40, International $58 (indiv.), $30 (institutional), $75 Technical Editors (sustaining), $100 (corporate business) and $150 (patron). Steven Courtney If you are moving, please notify the National Office 4 weeks David Olszyk in advance. All editorial and advertising matters should be sent to: Advisory Committee Ron Elardo, 5749 Hunter Ct., Adrian, MI 49221-2471, Tom Neff, Committee Chair (517) 902-7230 or email [email protected] Sara Malone Martin Stone Copyright © 2017, American Conifer Society. All rights reserved. No material contained herein may be reproduced Ronald J. Elardo in any form without prior written permission of the publisher. Evelyn Cox, past Editor Opinions expressed by authors and advertisers are not necessarily those of the Society. Cover Photo Keteleria davidiana Taiwan and SE Note: Hardiness Zone references in CONIFERQUARTERLY are USDA classifications unless otherwise specified. Asia. Photo by Tom Cox. Climate Zone Cwa TABLE OF CONTENTS Florida’s BIG Bald Cypress 4 FROM ASHES to REBIRTH By Ronald J.
    [Show full text]
  • Coleoptera: Coccinellidae): Influence of Subelytral Ultrastructure
    Experimental & Applied Acarology, 23 (1999) 97–118 Review Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure M.A. Houck* Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409–3131, USA (Received 9 January 1997; accepted 17 April 1998) ABSTRACT The non-phoretic stages of mites of the genus Hemisarcoptes are predators of the family Diaspididae. The heteromorphic deutonymph (hypopus) maintains a stenoxenic relationship with beetles of the genus Chilocorus. The mites attach to the subelytral surface of the beetle elytron during transport. There is variation in mite density among species of Chilocorus. Both Hemisarcoptes and Chilocorus have been applied to biological control programmes around the world. The objective of this study was to determine whether subelytral ultrastructure (spine density) plays a role in the evolution of symbiosis between the mite and the beetle. The subelytral surfaces of 19 species of Chilocorus and 16 species of Exochomus were examined. Spine density was determined for five subelytral zones: the anterior pronotal margin, medial central region, caudoventral tip, lateral distal margin and epipleural region. Spine density on the subelytral surface of Chilocorus and Exochomus was inversely correlated with the size of the elytron for all zones except the caudoventral tip. This suggests that an increase in body size resulted in a redistribution of spines and not an addition of spines. The pattern of spine density in Exochomus and Chilocorus follows a single size–density trajectory. The pattern of subelytral ultrastructure is not strictly consistent with either beetle phylogeny or beetle allometry. The absence of spines is not correlated with either beetle genus or size and species of either Chilocorus or Exochomus may be devoid of spines in any zone, irrespective of body size.
    [Show full text]
  • Evaluating a Standardized Protocol and Scale for Determining Non-Native Insect Impact
    A peer-reviewed open-access journal NeoBiota 55: 61–83 (2020) Expert assessment of non-native insect impacts 61 doi: 10.3897/neobiota.55.38981 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions The impact is in the details: evaluating a standardized protocol and scale for determining non-native insect impact Ashley N. Schulz1, Angela M. Mech2, 15, Craig R. Allen3, Matthew P. Ayres4, Kamal J.K. Gandhi5, Jessica Gurevitch6, Nathan P. Havill7, Daniel A. Herms8, Ruth A. Hufbauer9, Andrew M. Liebhold10, 11, Kenneth F. Raffa12, Michael J. Raupp13, Kathryn A. Thomas14, Patrick C. Tobin2, Travis D. Marsico1 1 Arkansas State University, Department of Biological Sciences, PO Box 599, State University, AR 72467, USA 2 University of Washington, School of Environmental and Forest Sciences, 123 Anderson Hall, 3715 W Stevens Way NE, Seattle, WA 98195, USA 3 U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Unit, University of Nebraska-Lincoln, 423 Hardin Hall, 3310 Holdrege Street, Lincoln, NE 68583, USA 4 Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA 5 The University of Georgia, Daniel B. Warnell School of Forestry and Natural Resources, 180 E. Green St., Athens, GA 30602, USA 6 Stony Brook University, Department of Ecology and Evolution, Stony Brook, NY 11794, USA 7 USDA Forest Service Northern Research Station, 51 Mill Pond Rd., Hamden, CT 06514, USA 8 The Davey Tree Expert Company, 1500 N Mantua St., Kent, OH 44240, USA
    [Show full text]
  • Coleoptera: Coccinellidae) As a Biocontrol Agent
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 046 Review Factors affecting utility of Chilocorus nigritus (F.) (Coleoptera: Coccinellidae) as a biocontrol agent D.J. Ponsonby* Address: Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent. CT1 1QU, UK. *Correspondence: Email: [email protected] Received: 30 March 2009 Accepted: 25 June 2009 doi: 10.1079/PAVSNNR20094046 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Chilocorus nigritus (F.) has been one of the most successful coccidophagous coccinellids in the history of classical biological control. It is an effective predator of many species of Diaspididae, some Coccidae and some Asterolecaniidae, with an ability to colonize a relatively wide range of tropical and sub-tropical environments. It appears to have few natural enemies, a rapid numerical response and an excellent capacity to coexist in stable relationships with parasitoids. A great deal of literature relating to its distribution, biology, ecology, mass rearing and prey preferences exists, but there is much ambiguity and the beetle sometimes inexplicably fails to establish, even when conditions are apparently favourable. This review brings together the key research relating to factors that affect its utility in biocontrol programmes, including its use in indoor landscapes and temperate glasshouses. Data are collated and interpreted and areas where knowledge is lacking are identified. Recommendations are made for prioritizing further research and improving its use in biocontrol programmes.
    [Show full text]
  • University of Nevada, Reno Dendrochronological Potential Of
    University of Nevada, Reno Dendrochronological Potential of Bermuda Cedar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geography by Jehren A. Boehm Dr. Adam Csank/Thesis Advisor December, 2019 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by Entitled be accepted in partial fulfillment of the requirements for the degree of , Advisor , Committee Member , Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School i Abstract The Bermuda cedar, Juniperus bermudiana, is an endangered species endemic to the Bermuda Islands. Likely speciating from a common ancestor of mainland and Caribbean junipers, the Bermuda cedar thrives in the limestone soil and breaks the salty Atlantic wind for less hardy flora. From the time of its establishment on the isolated archipelago until the 15th century, no mammals treaded beneath the Bermuda cedar canopy. The first human use for Bermuda cedar was to repair ships that had wrecked on the treacherous reefs igniting a craze for the valuable lumber. After multiple waves of deforestation and large shifts in land use, conservation of the Bermuda cedar was always an issue and eventually was prioritized by the late 20th century. By 1950 between 90-95% of Bermuda cedars, already competing with multitudes of introduced species, were defoliated and killed by an outbreak of invasive scale leaf insects that were accidentally introduced. Roughly 1% of Bermuda cedars that lived in the 1930’s are still growing today. As a culturally important forestry product since the 17th century an accurate chronology is vital to tell the story of Churches, historic structures and to reconstruct weather and climate that has impacted the Bermuda Islands over the last centuries.
    [Show full text]
  • CHEMOTAXONOMY of the CUPRESSACEAE. by P. A. GADEK School of Botany University of New South Wales February, 1986. Thesis Submitte
    CHEMOTAXONOMY OF THE CUPRESSACEAE. by P. A. GADEK School of Botany University of New South Wales February, 1986. Thesis submitted for the degree of Doctor of Philosophy. DECLARATION. "I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text of the thesis." ABSTRACT. The aim of this thesis was to extend the data base of the Cupressaceae s.s. by a survey of leaf biflavonoids, and to apply this, with other available data, to a critical reassessment of the current tribes and subfamilies. The biflavonoids in ethanolic leaf extracts of representatives of all genera were analysed by thin layer chromatography. Compounds were identified by chromatographic comparisons with a range of standards, by colour of fluorescence after spraying with an ethanolic solution of AlCu, shifts in UV absorption spectra, as well as permethylation. TLC of permethylated raw extracts proved to be a sensitive method of detecting the range of biflavonoid skeletons present in each species. While there was a high degree of uniformity in the biflavonoid series present in most genera, marked discontinuities were detected within Calocedrus, Chamaecyparis and Thuja. A reassessment of these genera on a broad -range of available data led to the resurrection of two genera, Heyderia and Callitropsis, a redefinition of Thuja as a monotypic genus and the erection of a new genus, Neothuja, to encompass the species removed from Thuja.
    [Show full text]
  • A New Record of the Armored Scale Genus Carulaspis Macgillivray
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2016 A new record of the armored scale genus Carulaspis MacGillivray (Hemiptera: Diaspididae) from Korea and its aphelinid parasitoids (Hymenoptera: Aphelinidae) Soo-Jung Suh 167, Yongjeon 1-ro, Gimcheon-si Gyeongsangbuk-do, South Korea, [email protected] Gregory A. Evans USDA/Animal Plant Health Inspection Service Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Suh, Soo-Jung and Evans, Gregory A., "A new record of the armored scale genus Carulaspis MacGillivray (Hemiptera: Diaspididae) from Korea and its aphelinid parasitoids (Hymenoptera: Aphelinidae)" (2016). Insecta Mundi. 974. http://digitalcommons.unl.edu/insectamundi/974 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0466 A new record of the armored scale genus Carulaspis MacGillivray (Hemiptera: Diaspididae) from Korea and its aphelinid parasitoids (Hymenoptera: Aphelinidae) Soo-Jung Suh 167, Yongjeon 1-ro, Gimcheon-si Gyeongsangbuk-do, South Korea 39660 Gregory A. Evans USDA/Animal Plant Health Inspection Service 10300 Baltimore Avenue Beltsville, MD 20705 USA Date of Issue: January 22, 2016 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Soo-Jung Suh and Gregory A. Evans A new record of the armored scale genus Carulaspis MacGillivray (Hemiptera: Diaspididae) from Korea, and its aphelinid parasitoids (Hymenoptera: Aphelinidae) Insecta Mundi 0466: 1–6 ZooBank Registered: urn:lsid:zoobank.org:pub:4C0AB655-B42F-4486-9180-D76547CD6A50 Published in 2016 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Scale Insects of Britain
    SCALE INSECTS OF BRITAIN Duncan Allen & Chris Malumphy Fera Science Ltd., National Agri-Food Innovation Campus Sand Hutton, York, UK YO41 1LZ Outline of talk • What are Scale insects? • Biology • Beneficial scales • Scale insect plant pests • Scale insects in Britain • Detection in different habitats • How to identify scales • Why study scale insects in Animal or vegetable? One Britain? species was only determined to be an insect and not a seed, following a lawsuit (Imms, 1990) What are scale insects? • Plant-sap feeding insects • Related to aphids, whitefly & psyllids • Feed on all parts of the plant • 8000 species • 1050 genera • Between 20-31 families • Higher classification is evolving https://horticulture.com.au/wp-content/uploads/2017/02/Scale-insect-pest-management- plan.pdf Biology and Dispersal • Sexually dimorphic; neotenic females; non-feeding winged adult males • Females 3-4 instars; Males 5 instars • Reproduce sexually, parthenogenetically and hermaphrodites • Most lay eggs, protected by an ovisac, female's body, separate scale-like cover, between wax plates or inside a ventral abdominal pouch • First instars (crawlers) actively disperse and carried by wind • Commonly transported in trade. One of the most successful colonising groups of insects in warmer parts of the world Scale insect life cycle • Beech felt scale Cryptococcus fagisuga • Females 4 instars; males 5 instars • Univoltine (Morales et al 1988) Beneficial scale insects • Used for centuries for production of dyes (Dactylopius, Kermes, Porphyrophora) • Lacquers (Shellac
    [Show full text]