A New Record of the Armored Scale Genus Carulaspis Macgillivray
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Coleoptera: Coccinellidae): Influence of Subelytral Ultrastructure
Experimental & Applied Acarology, 23 (1999) 97–118 Review Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure M.A. Houck* Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409–3131, USA (Received 9 January 1997; accepted 17 April 1998) ABSTRACT The non-phoretic stages of mites of the genus Hemisarcoptes are predators of the family Diaspididae. The heteromorphic deutonymph (hypopus) maintains a stenoxenic relationship with beetles of the genus Chilocorus. The mites attach to the subelytral surface of the beetle elytron during transport. There is variation in mite density among species of Chilocorus. Both Hemisarcoptes and Chilocorus have been applied to biological control programmes around the world. The objective of this study was to determine whether subelytral ultrastructure (spine density) plays a role in the evolution of symbiosis between the mite and the beetle. The subelytral surfaces of 19 species of Chilocorus and 16 species of Exochomus were examined. Spine density was determined for five subelytral zones: the anterior pronotal margin, medial central region, caudoventral tip, lateral distal margin and epipleural region. Spine density on the subelytral surface of Chilocorus and Exochomus was inversely correlated with the size of the elytron for all zones except the caudoventral tip. This suggests that an increase in body size resulted in a redistribution of spines and not an addition of spines. The pattern of spine density in Exochomus and Chilocorus follows a single size–density trajectory. The pattern of subelytral ultrastructure is not strictly consistent with either beetle phylogeny or beetle allometry. The absence of spines is not correlated with either beetle genus or size and species of either Chilocorus or Exochomus may be devoid of spines in any zone, irrespective of body size. -
The Biology and Ecology of Armored Scales
Copyright 1975. All rights resenetl THE BIOLOGY AND ECOLOGY +6080 OF ARMORED SCALES 1,2 John W. Beardsley Jr. and Roberto H. Gonzalez Department of Entomology, University of Hawaii. Honolulu. Hawaii 96822 and Plant Production and Protection Division. Food and Agriculture Organization. Rome. Italy The armored scales (Family Diaspididae) constitute one of the most successful groups of plant-parasitic arthropods and include some of the most damaging and refractory pests of perennial crops and ornamentals. The Diaspididae is the largest and most specialized of the dozen or so currently recognized families which compose the superfamily Coccoidea. A recent world catalog (19) lists 338 valid genera and approximately 1700 species of armored scales. Although the diaspidids have been more intensively studied than any other group of coccids, probably no more than half of the existing forms have been recognized and named. Armored scales occur virtually everywhere perennial vascular plants are found, although a few of the most isolated oceanic islands (e.g. the Hawaiian group) apparently have no endemic representatives and are populated entirely by recent adventives. In general. the greatest numbers and diversity of genera and species occur in the tropics. subtropics. and warmer portions of the temperate zones. With the exclusion of the so-called palm scales (Phoenicococcus. Halimococcus. and their allies) which most coccid taxonomists now place elsewhere (19. 26. 99). the armored scale insects are a biologically and morphologically distinct and Access provided by CNRS-Multi-Site on 03/25/16. For personal use only. Annu. Rev. Entomol. 1975.20:47-73. Downloaded from www.annualreviews.org homogenous group. -
Evaluating a Standardized Protocol and Scale for Determining Non-Native Insect Impact
A peer-reviewed open-access journal NeoBiota 55: 61–83 (2020) Expert assessment of non-native insect impacts 61 doi: 10.3897/neobiota.55.38981 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions The impact is in the details: evaluating a standardized protocol and scale for determining non-native insect impact Ashley N. Schulz1, Angela M. Mech2, 15, Craig R. Allen3, Matthew P. Ayres4, Kamal J.K. Gandhi5, Jessica Gurevitch6, Nathan P. Havill7, Daniel A. Herms8, Ruth A. Hufbauer9, Andrew M. Liebhold10, 11, Kenneth F. Raffa12, Michael J. Raupp13, Kathryn A. Thomas14, Patrick C. Tobin2, Travis D. Marsico1 1 Arkansas State University, Department of Biological Sciences, PO Box 599, State University, AR 72467, USA 2 University of Washington, School of Environmental and Forest Sciences, 123 Anderson Hall, 3715 W Stevens Way NE, Seattle, WA 98195, USA 3 U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Unit, University of Nebraska-Lincoln, 423 Hardin Hall, 3310 Holdrege Street, Lincoln, NE 68583, USA 4 Dartmouth College, Department of Biological Sciences, 78 College Street, Hanover, NH 03755, USA 5 The University of Georgia, Daniel B. Warnell School of Forestry and Natural Resources, 180 E. Green St., Athens, GA 30602, USA 6 Stony Brook University, Department of Ecology and Evolution, Stony Brook, NY 11794, USA 7 USDA Forest Service Northern Research Station, 51 Mill Pond Rd., Hamden, CT 06514, USA 8 The Davey Tree Expert Company, 1500 N Mantua St., Kent, OH 44240, USA -
Pathways Analysis of Invasive Plants and Insects in the Northwest Territories
PATHWAYS ANALYSIS OF INVASIVE PLANTS AND INSECTS IN THE NORTHWEST TERRITORIES Project PM 005529 NatureServe Canada K.W. Neatby Bldg 906 Carling Ave., Ottawa, ON, K1A 0C6 Prepared by Eric Snyder and Marilyn Anions NatureServe Canada for The Department of Environment and Natural Resources. Wildlife Division, Government of the Northwest Territories March 31, 2008 Citation: Snyder, E. and Anions, M. 2008. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories. Report for the Department of Environment and Natural Resources, Wildlife Division, Government of the Northwest Territories. Project No: PM 005529 28 pages, 5 Appendices. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories i NatureServe Canada Acknowledgements NatureServe Canada and the Government of the Northwest Territories, Department of Environment and Natural Resources, would like to acknowledge the contributions of all those who supplied information during the production of this document. Canada : Eric Allen (Canadian Forest Service), Lorna Allen (Alberta Natural Heritage Information Centre, Alberta Community Development, Parks & Protected Areas Division), Bruce Bennett (Yukon Department of Environment), Rhonda Batchelor (Northwest Territories, Transportation), Cristine Bayly (Ecology North listserve), Terri-Ann Bugg (Northwest Territories, Transportation), Doug Campbell (Saskatchewan Conservation Data Centre), Suzanne Carrière (Northwest Territories, Environment & Natural Resources), Bill Carpenter (Moraine Point Lodge, Northwest -
Coleoptera: Coccinellidae) As a Biocontrol Agent
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 046 Review Factors affecting utility of Chilocorus nigritus (F.) (Coleoptera: Coccinellidae) as a biocontrol agent D.J. Ponsonby* Address: Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent. CT1 1QU, UK. *Correspondence: Email: [email protected] Received: 30 March 2009 Accepted: 25 June 2009 doi: 10.1079/PAVSNNR20094046 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Chilocorus nigritus (F.) has been one of the most successful coccidophagous coccinellids in the history of classical biological control. It is an effective predator of many species of Diaspididae, some Coccidae and some Asterolecaniidae, with an ability to colonize a relatively wide range of tropical and sub-tropical environments. It appears to have few natural enemies, a rapid numerical response and an excellent capacity to coexist in stable relationships with parasitoids. A great deal of literature relating to its distribution, biology, ecology, mass rearing and prey preferences exists, but there is much ambiguity and the beetle sometimes inexplicably fails to establish, even when conditions are apparently favourable. This review brings together the key research relating to factors that affect its utility in biocontrol programmes, including its use in indoor landscapes and temperate glasshouses. Data are collated and interpreted and areas where knowledge is lacking are identified. Recommendations are made for prioritizing further research and improving its use in biocontrol programmes. -
A Note on Some Species of the Genus Diaspis COSTA, 1828
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 1968 Band/Volume: 72 Autor(en)/Author(s): Boratynski K. Artikel/Article: A note on some species of the genus Diaspis Costa, 1828, (Hemiptera, Coccoidea) in the Collections of the Naturhistorisches Museum in Vienna; with the description of a new species. 33-43 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhistor. Mus. Wien 72 33-43 Wien, November 1968 A note on some species of the genus Diaspis COSTA, 1828, (Hemip- tera, Coccoidea) in the Collections of the Naturhistorisches Museum in Vienna; with the description of a new species. By K. BORATYNSKI (Mit 1 Textabbildung) Manuskript eingelangt am 2. Oktober 1967 The collections of the Coccoidea in the Naturhistorisches Museum in Vienna, — most of which are preserved in the dry state, — comprise the valu- able original material of some species described and discussed by SIG-NORET in his „Essai sur les Cochenilles" (1868—1877). I am very grateful to the Director, Professor Dr. MAX BEIER, for the loan of 13 samples of various Diaspis spp. from the collections (case No. 22), with permission to make the necessary microscopical preparations. Six of these samples were identified by SIGNORET and most of them referred to in his Essai Pt. 5 (1869); three were determined by LOEW, and four had no specific identification. Except for one sample which consisted of a glass tube with the scales removed from the host, the specimens were preserved on parts of the host-plants pinned in the collection case. -
Checklist of the Scale Insects (Hemiptera : Sternorrhyncha : Coccomorpha) of New Caledonia
Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia Christian MILLE Institut agronomique néo-calédonien, IAC, Axe 1, Station de Recherches fruitières de Pocquereux, Laboratoire d’Entomologie appliquée, BP 32, 98880 La Foa (New Caledonia) [email protected] Rosa C. HENDERSON† Landcare Research, Private Bag 92170 Auckland Mail Centre, Auckland 1142 (New Zealand) Sylvie CAZÈRES Institut agronomique néo-calédonien, IAC, Axe 1, Station de Recherches fruitières de Pocquereux, Laboratoire d’Entomologie appliquée, BP 32, 98880 La Foa (New Caledonia) [email protected] Hervé JOURDAN Institut méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Université d’Avignon, UMR 237 IRD, Centre IRD Nouméa, BP A5, 98848 Nouméa cedex (New Caledonia) [email protected] Published on 24 June 2016 Rosa Henderson† left us unexpectedly on 13th December 2012. Rosa made all our recent c occoid identifications and trained one of us (SC) in Hemiptera Sternorrhyncha slide preparation and identification. The idea of publishing this article was largely hers. Thus we dedicate this article to our late and dear Rosa. Rosa Henderson† nous a quittés prématurément le 13 décembre 2012. Rosa avait réalisé toutes les récentes identifications de cochenilles et avait formé l’une d’entre nous (SC) à la préparation des Hemiptères Sternorrhynques entre lame et lamelle. Grâce à elle, l’idée de publier cet article a pu se concrétiser. Nous dédicaçons cet article à notre chère et regrettée Rosa. urn:lsid:zoobank.org:pub:90DC5B79-725D-46E2-B31E-4DBC65BCD01F Mille C., Henderson R. C.†, Cazères S. & Jourdan H. 2016. — Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia. -
Live Plant Imports: the Major Pathway for Forest Insect and Pathogen
REVIEWS REVIEWS REVIEWS Live plant imports: the major pathway for 135 forest insect and pathogen invasions of the US Andrew M Liebhold1*, Eckehard G Brockerhoff2, Lynn J Garrett3, Jennifer L Parke4, and Kerry O Britton5 Trade in live plants has been recognized worldwide as an important invasion pathway for non-native plant pests. Such pests can have severe economic and ecological consequences. Nearly 70% of damaging forest insects and pathogens established in the US between 1860 and 2006 most likely entered on imported live plants. The current regulation of plant imports is outdated and needs to balance the impacts of pest damage, the expense of mitigation efforts, and the benefits of live plant importation. To inform these discussions, we document large increases in the volume and value of plant imports over the past five decades and explain recent and proposed changes to plant import regulations. Two data sources were used to estimate the infesta- tion rate of regulated pests in live plant shipments entering the US, thus allowing evaluation of the efficacy of the current port inspection process. Front Ecol Environ 2012; 10(3): 135–143, doi:10.1890/110198 (published online 5 Mar 2012) nvasions of non-native forest insects and pathogens invasions (eg chestnut blight in North America) have vir- Icontinue despite ongoing countermeasures by federal tually extirpated their host tree species; thus, cascading and state agencies; on average, 2.5 previously unrecognized environmental impacts may be substantial. non-native insect species establish per year in the US The importance of the plant trade as an invasion path- (Aukema et al. -
Scale Insects of Britain
SCALE INSECTS OF BRITAIN Duncan Allen & Chris Malumphy Fera Science Ltd., National Agri-Food Innovation Campus Sand Hutton, York, UK YO41 1LZ Outline of talk • What are Scale insects? • Biology • Beneficial scales • Scale insect plant pests • Scale insects in Britain • Detection in different habitats • How to identify scales • Why study scale insects in Animal or vegetable? One Britain? species was only determined to be an insect and not a seed, following a lawsuit (Imms, 1990) What are scale insects? • Plant-sap feeding insects • Related to aphids, whitefly & psyllids • Feed on all parts of the plant • 8000 species • 1050 genera • Between 20-31 families • Higher classification is evolving https://horticulture.com.au/wp-content/uploads/2017/02/Scale-insect-pest-management- plan.pdf Biology and Dispersal • Sexually dimorphic; neotenic females; non-feeding winged adult males • Females 3-4 instars; Males 5 instars • Reproduce sexually, parthenogenetically and hermaphrodites • Most lay eggs, protected by an ovisac, female's body, separate scale-like cover, between wax plates or inside a ventral abdominal pouch • First instars (crawlers) actively disperse and carried by wind • Commonly transported in trade. One of the most successful colonising groups of insects in warmer parts of the world Scale insect life cycle • Beech felt scale Cryptococcus fagisuga • Females 4 instars; males 5 instars • Univoltine (Morales et al 1988) Beneficial scale insects • Used for centuries for production of dyes (Dactylopius, Kermes, Porphyrophora) • Lacquers (Shellac -
WRA Species Report
Family: Cupressaceae Taxon: Juniperus bermudiana Synonym: Juniperus virginiana var. bermudiana (L.) Va Common Name: Bemuda juniper Sabina bermudiana (L.) Antoine Bermuda cedar Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 7 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, -
Phylogeny and Classification of Armored Scale Insects (Hemiptera: Coccomorpha: Diaspididae)
Zootaxa 4616 (1): 001–098 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4616.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:1B9DFBC9-2BA8-4619-8F70-E372DCBD7411 ZOOTAXA 4616 Phylogeny and classification of armored scale insects (Hemiptera: Coccomorpha: Diaspididae) BENJAMIN B. NORMARK1,2,7, AKIKO OKUSU1, GEOFFREY E. MORSE3, DANIEL A. PETERSON1,2,4, TAKAO ITIOKA5 & SCOTT A. SCHNEIDER1, 2, 6 1Department of Biology, University of Massachusetts, Amherst, Massachusetts, U.S.A. 2Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, U.S.A. 3Department of Biology, University of San Diego, San Diego, California, U.S.A. E-mail: [email protected] 4Present address: Finch Therapeutics, Somerville, Massachusetts, U.S.A. 5Graduate School of Human and Environmental Studies, Kyoto University, Japan. E-mail: [email protected] 6Present address: USDA, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Systematic Ento- mology Laboratory, Beltsville, Maryland, U.S.A. E-mail: [email protected] 7Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by G. Watson: 5 Feb. 2019; published: 17 Jun. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 BENJAMIN B. NORMARK, AKIKO OKUSU, GEOFFREY E. MORSE, DANIEL A. PETERSON, TAKAO ITIOKA & SCOTT A. SCHNEIDER Phylogeny and classification of armored scale insects (Hemiptera: Coccomorpha: Diaspididae) (Zootaxa 4616) 98 pp.; 30 cm. 17 Jun. 2019 ISBN 978-1-77670-683-9 (paperback) ISBN 978-1-77670-684-6 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O.