Identification Key to the Cypress Family (Cupressaceae)1

Total Page:16

File Type:pdf, Size:1020Kb

Identification Key to the Cypress Family (Cupressaceae)1 Feddes Repertorium 116 (2005) 1–2, 96–146 DOI: 10.1002/fedr.200411062 Weinheim, Mai 2005 Ruhr-Universität Bochum, Lehrstuhl für Spezielle Botanik, Bochum C. SCHULZ; P. KNOPF & TH. STÜTZEL Identification key to the Cypress family (Cupressaceae)1 With 11 Figures Summary Zusammenfassung The identification of Cupressaceae taxa, except for Bestimmungsschlüssel für die Familie der Cup- some local and easily distinguishable taxa, is diffi- ressaceae cult even for specialists. One reason for this is the lack of a complete key including all Cupressaceae Die Bestimmung von Cupressaceae-Taxa ist mit taxa, another reason is that diagnoses and descrip- Ausnahme einiger lokaler und leicht bestimmbarer tions are spread over several hundred publications Taxa schwierig, selbst für Spezialisten. Ein Grund, which are sometimes difficult to access. Based on warum es noch keinen vollständigen Bestimmungs- morphological studies of about 3/4 of the species and schlüssel mit allen Cupressaceae-Taxa gibt ist, dass a careful compilation of the most important descrip- die Sippen-Beschreibungen sich auf mehrere hundert tions of Cupressaceae, a first identification key for Publikationen verteilen, welche teilweise schwierig the entire Cypress family (Cupressaceae) could be zu beschaffen sind. Etwa 3/4 der Cupressaceae-Ar- set up. The key comprises any of the 30 genera, 134 ten wurden morphologisch untersucht und die wich- species, 7 subspecies, 38 varieties, one form and thus tigsten Beschreibungen zusammengefasst, daraus all 180 taxa recognized by FARJON (2001). The key wurde dann der erste vollständige Bestimmungs- uses mainly features of adult leaves, female cones schlüssel für Cupressaceae erstellt. Der Bestim- and other characters which are all relatively easy to mungsschlüssel enthält 30 Gattungen, 134 Arten, be used. 7 Unterarten, 38 Varietäten, eine Form und damit alle 180 Taxa nach FARJON (2001). Es werden vor- wiegend Merkmale von adulten Blättern, weiblichen Zapfen und andere Merkmale verwendet, welche alle relativ leicht erkennbar sind. Introduction important genera like Callitris, Cupressus and Juniperus. In many cases geographic informa- One of the first species to be published accord- tion is used in keys, what makes them often ing to the “International Code of Botanical inappropriate to determine material hold in Nomenclature” was Cupressus sempervirens L. collections such as arboreta and botanical gar- in 1753, the last was Xanthocyparis vietnamen- dens. In their natural habitat, it is mostly quite sis FARJON & HIEP in 2002. During this long simple to determine Cupressaceae, as there is time, several hundred descriptions for taxa of usually only a limited number of Cupressaceae all ranks in Cupressaceae were published. De- native to a region. spite the fact that many species are cultivated world wide, only regional keys have been set up. There is neither a key for all genera of the Materials and methods family, nor a full key for all members of such Nomenclature and taxonomy are generally adopted 1 from FARJON (2001). The key is based on morpho- Data matrix inclusive illustrations for interactive identification using DELTA/INTKEY available on http://www.boga.ruhr-uni- logical studies of about 3/4 of the species and a bochum.de/spezbot/publikationen.htm careful compilation of the relevant bibliography. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0014-8962/05/1-205-0096 C. SCHULZ et al.: Identification key of the Cypress family (Cupressaceae) 97 Keys were performed using the DELTA-package Bonn; Athrotaxis laxifolia: BG Bonn, BG Düs- (DALLWITZ 1974, 1980; DALLWITZ et al. 1993, 1995, seldorf; Athrotaxis selaginoides: BG Bonn; 1999, 2000). All data collected from own examina- Austrocedrus chilensis: BG Bonn, BG Düssel- tions and the bibliography were entered into a dorf, Palmengarten Frankfurt (Main); Calo- DELTA matrix. These taxa studied can be grouped in three parts. The first group comprises those taxa cedrus decurrens: BG Bochum, Essen Gruga- which are frequently grown in Germany even out- park, Palmengarten Frankfurt (Main), BG side botanical gardens. Access to material was not or Frankfurt(Main), BG Strasbourg; Callitris hardly limited for this group, and morphological, canescens: BG Halle (Saale); Callitris columel- especially morphometrical characters are supposed laris: BG Bonn; Callitris drummondii: BG not to differ markedly from natural conditions. This Bochum; Callitris endlicheri: BG Berlin, BG was mostly proven by comparing data from the Düsseldorf; Callitris oblonga: A Freiburg; bibliography with ours. The data sets as well as the Callitris preissii: BG Bochum, BG Bonn; Cal- range for many characters were however emended litris rhomboidea: BG Bochum; Callitris verru- markedly even for this group. A second list com- prises the taxa which are usually only found in scien- cosa: BG Bochum; Calocedrus formosana: BG tific collections such as botanic gardens and arbo- Düsseldorf, BG Bonn; Calocedrus macrolepis: reta. It may be suspected that these taxa are grown Dortmund Rombergpark; Chamaecyparis for- under conditions more different from their natural mosensis: BG Düsseldorf; Chamaecyparis environment. This might result in differences to obtusa var. formosana: A Güntertal; Chamae- material collected from natural sites, and we tried to cyparis thyoides var. henryae: BG Mainz; get material from different sources and compared the Chamaecyparis thyoides var. thyoides: BG results carefully with data from the bibliography. Bochum, Dortmund Rombergpark; Cunning- The third group comprises those taxa for which no hamia konishii: Palmengarten Frankfurt material could be accessed and only data from the bibliography and herbarium samples could be in- (Main); Cupressus arizonica var. arizonica: BG cluded. Cultivars were excluded, it is however Mainz, Flora Köln, Esveld, Dortmund Rom- mostly possible to identify cultivars as well, if char- bergpark; Cupressus arizonica var. montana: acters like size and habit are excluded. The identifi- BG Bayreuth; Cupressus arizonica var. ne- cation of herbarium samples is conditionally possi- vadensis: BG Bayreuth; Cupressus bakeri: ble, if character colour is not necessary. Dortmund Rombergpark, Palmengarten Frank- List 1 (Species occurring in Germany also furt (Main), A Freiburg, RBG Kew; Cupressus outside of botanical gardens and botanical cashmeriana: BG Bochum, BG Bonn, BG collections; frequently cultivated taxa) Hamburg, BG Berlin, A Freiburg; Cupressus chengiana var. chengiana: RBG Kew, A Chamaecyparis lawsoniana, Chamaecyparis Trompenburg; Cupressus chengiana var. jian- obtusa var. obtusa, Chamaecyparis pisifera, gensis: private; Cupressus duclouxiana: BG Cryptomeria japonica, Cunninghamia lanceo- München, BG Bochum; Cupressus dupreziana lata, Cupressus arizonica var. glabra, Cupres- var. atlantica: BG Berlin, BG Bayreuth; Cu- sus sempervirens, Juniperus chinensis var. pressus dupreziana var. dupreziana: BG Bo- chinensis, Juniperus communis var. communis, chum, BG Bonn, BG Hamburg, BG Berlin, A Juniperus horizontalis, Juniperus sabina var. Freiburg; Cupressus funebris: BG Frankfurt sabina, Metasequoia glyptostroboides, Micro- (Main), BG Bochum, BG Berlin, A Freiburg, biota decussata, Platycladus orientalis, Se- BG Marburg, BG München; Cupressus gigan- quoiadendron giganteum, Taxodium distichum tea: BG Marburg, BG Bochum, BG Bayreuth; var. distichum, Thuja occidentalis, Thuja pli- Cupressus goveniana var. abramsiana: Flora cata, Thujopsis dolabrata var. dolabrata, Xan- Köln; Cupressus goveniana var. goveniana: BG thocyparis nootkatensis. Münster, BG Bochum, BG Bayreuth, A Frei- burg; Cupressus guadalupensis var. forbesii: List 2 (Species occurring in Germany only in BG Bayreuth; Cupressus guadalupensis var. botanical gardens or botanical collections; BG guadalupensis: BG Bayreuth; Cupressus lusi- = botanical garden, A = arboretum, RBG = tanica var. benthamii: BG Bochum; Cupressus Royal Botanical Garden) lusitanica var. lusitanica: BG Bochum, BG Actinostrobus pyramidalis: BG Halle (Saale), Hamburg, BG Halle (Saale); Cupressus mac- BG München; Athrotaxis cupressoides: BG nabiana: BG Hamburg, BG Mainz, RBG Kew; © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 98 Feddes Repert., Weinheim 116 (2005) 1–2 Cupressus macrocarpa: BG Halle (Saale), BG var. virginiana: BG Bochum, BG Mainz, BG Bochum, Dortmund Rombergpark, BG Mar- Dortmund, Essen Grugapark, BG Berlin; Libo- burg; Cupressus sargentii: BG Hamburg, BG cedrus bidwillii: Palmengarten Frankfurt Bayreuth; Cupressus torulosa: A Trompenburg, (Main); Libocedrus plumosa: Palmengarten BG Berlin, BG Hamburg; Diselma archeri: BG Frankfurt (Main); Papuacedrus papuana var. Bonn; Fitzroya cupressoides: BG Düsseldorf, papuana: BG Bonn; Papuacedrus papuana Palmengarten Frankfurt (Main), A Freiburg; var. arfakensis: BG Bonn; Pilgerodendron Fokienia hodginsii: BG Düsseldorf, BG Bonn, uviferum: Palmengarten Frankfurt (Main), A Palmengarten Frankfurt (Main); Glyptostrobus Güntertal; Sequoia sempervirens: BG Bochum, pensilis: BG Bochum, BG Bonn; Juniperus BG Düsseldorf; Taiwania cryptomerioides: BG ashei: BG Hamburg, BG Berlin; Juniperus Düsseldorf; Taxodium distichum var. imbrica- bermudiana: Esveld; Juniperus cedrus: BG tum: BG Bochum, Palmengarten Frankfurt Bochum, BG Bonn, BG Marburg; Juniperus (Main); Taxodium mucronatum: BG Düssel- chinensis var. sargentii: BG Bochum, BG Ber- dorf, BG Freiburg, A Güntertal; Tetraclinis lin; Juniperus communis var. depressa: BG articulata: BG Düsseldorf, BG Bonn, BG Bo- Bochum; Juniperus communis var. saxatilis: chum; Thuja
Recommended publications
  • Austrocedrus Forests of South America Are Pivotal Ecosystems at Risk Due to the Emergence of an Exotic Tree Disease
    GSDR 2015 Brief Austrocedrus forests of South America are pivotal ecosystems at risk due to the emergence of an exotic tree disease: can a joint effort of research and policy save them? By Alina Greslebin 1, Maria Laura Vélez 2 and Matteo Garbelotto 3. 1CONICET-Universidad Nacional de la Patagonia SJB, Argentina; 2CONICET-Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Argentina; 3University of California Berkeley, USA Introduction A. chilensis covers today a total estimated area of Human expansion, global movement, and climate 185,000 ha in South America. As a dominant forest change have led to a number of emerging and re- species, its role in supporting biodiversity, generating emerging diseases. The decline of biodiversity due to shelter for wildlife, as well as preventing soil erosion emerging plants pathogens may cause habitat and and preserving water quality is well understood. Along wildlife loss and declines in ecosystem services. This, in with Araucaria araucana, it is the tree species that turn, often results in lower human well-being. Reports grows furthest into the ecotone zone within the of emerging plant diseases are constantly on the rise, Patagonia steppe, where it plays a key role preventing and often they appear to be linked to the commercial desertification. There are however additional functions trade of plants and plant products. While there are this tree provides, including the production of valuable several examples of decimation or extinction of plant timber and the generation of an environment ideal for hosts affected by invasive forest diseases, there are no cattle grazing, recreational and touristic activities and known cases of invasive forest diseases successfully for human settlement.
    [Show full text]
  • (Athrotaxoideae, Cupressaceae) from the Upper Cretaceous Raritan Formation, New Jersey, USA
    Botany A new species of Athrotaxites (Athrotaxoideae, Cupressaceae) from the Upper Cretaceous Raritan Formation, New Jersey, USA. Journal: Botany Manuscript ID cjb-2016-0061.R1 Manuscript Type: Article Date Submitted by the Author: 19-May-2016 Complete List of Authors: Escapa, Ignacio; CONICET-MEF, Paleobotany Gandolfo, Maria;Draft Cornell University, Department of Plant Biology Crepet, William; Cornell University, Department of Plant Biology Nixon, Kevin; Cornell University, L.H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University Keyword: Cupressaceae, Athrotaxites, Cretaceous, Raritan Formation, New Jersey https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 39 Botany A new species of Athrotaxites (Athrotaxoideae, Cupressaceae) from the Upper Cretaceous Raritan Formation, New Jersey, USA. Ignacio H. Escapa, Maria A. Gandolfo, William L. Crepet, and Kevin C. Nixon I. H. Escapa. CONICET, Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, 9100 Trelew, Chubut, Argentina. M. A Gandolfo, W. L. Crepet and K. C. Nixon. L.H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York Corresponding author: Ignacio Escapa (e-mail: [email protected]) Draft https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 39 Abstract. A new species of anatomically preserved Cupressaceae is described from the Upper Cretaceous Raritan Formation (New Jersey, USA). The fossils are charcolified isolated ovuliferous complexes that were studied by means of a combination of MEB images and Micro-CT, allowing the observation of morphological and anatomical characters. Each ovuliferous complex bears 3-4 anatropous winged seeds, disposed in one row on a thin medial part of the adaxial side of the ovuliferous complex.
    [Show full text]
  • Extinction, Transoceanic Dispersal, Adaptation and Rediversification
    Turnover of southern cypresses in the post-Gondwanan world: Title extinction, transoceanic dispersal, adaptation and rediversification Crisp, Michael D.; Cook, Lyn G.; Bowman, David M. J. S.; Author(s) Cosgrove, Meredith; Isagi, Yuji; Sakaguchi, Shota Citation The New phytologist (2019), 221(4): 2308-2319 Issue Date 2019-03 URL http://hdl.handle.net/2433/244041 © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust; This is an open access article under the terms Right of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Research Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification Michael D. Crisp1 , Lyn G. Cook2 , David M. J. S. Bowman3 , Meredith Cosgrove1, Yuji Isagi4 and Shota Sakaguchi5 1Research School of Biology, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Acton (Canberra), ACT 2601, Australia; 2School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia; 3School of Natural Sciences, The University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia; 4Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; 5Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan Summary Author for correspondence: Cupressaceae subfamily Callitroideae has been an important exemplar for vicariance bio- Michael D. Crisp geography, but its history is more than just disjunctions resulting from continental drift. We Tel: +61 2 6125 2882 combine fossil and molecular data to better assess its extinction and, sometimes, rediversifica- Email: [email protected] tion after past global change.
    [Show full text]
  • Border Rivers Maranoa - Balonne QLD Page 1 of 125 21-Jan-11 Species List for NRM Region Border Rivers Maranoa - Balonne, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
    Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S.
    [Show full text]
  • Callitris Forests and Woodlands
    NVIS Fact sheet MVG 7 – Callitris forests and woodlands Australia’s native vegetation is a rich and fundamental Overview element of our natural heritage. It binds and nourishes our ancient soils; shelters and sustains wildlife, protects Typically, vegetation areas classified under MVG 7 – streams, wetlands, estuaries, and coastlines; and absorbs Callitris forests and woodlands: carbon dioxide while emitting oxygen. The National • comprise pure stands of Callitris that are restricted and Vegetation Information System (NVIS) has been developed generally occur in the semi-arid regions of Australia and maintained by all Australian governments to provide • in most cases Callitris species are a co-dominant a national picture that captures and explains the broad or occasional species in other vegetation groups, diversity of our native vegetation. particularly eucalypt woodlands and forests in temperate This is part of a series of fact sheets which the Australian semi-arid and sub-humid climates. After disturbance, Government developed based on NVIS Version 4.2 data to Callitris may regenerate in high densities and become provide detailed descriptions of the major vegetation groups a dominant member of a mixed canopy layer. Some of (MVGs) and other MVG types. The series is comprised of these modified communities are mapped asCallitris a fact sheet for each of the 25 MVGs to inform their use by forests or woodlands planners and policy makers. An additional eight MVGs are • are generally dominated by a herbaceous understorey available outlining other MVG types. with only a few shrubs • in New South Wales Callitris has been an important For more information on these fact sheets, including forestry timber and large monocultures have been its limitations and caveats related to its use, please see: encouraged for this purpose ‘Introduction to the Major Vegetation Group (MVG) fact sheets’.
    [Show full text]
  • The Ecology and Biogeography of Athrotaxis D. Don
    THE ECOLOGY AND BIOGEOGRAPHY OF ATHROTAXIS D. DON. ,smo,e5 by Philip J. Cullen B.Sc. (Forestry) submitted in fulfilment of the requirements for the degree of Master of Science UNIVERSITY OF TASMANIA HOBART February 1987 DECLARATION This thesis contains no material which has been submitted for the award of any other degree or diploma in any university and contains no copy or paraphrases of material previously published or writtern by another person, except where due reference is made in the text. P. J. Cullen. CONTENTS PAGE ACKNOWLEGEMENTS ABSTRACT II LIST OF FIGURES IV LIST OF TABLES VI LIST OF PLATES VIII CHAPTER 1: INTRODUCTION , 1 CHAPTER 2: DISTRIBUTION AND SYNECOLOGY 2.1 Introduction 8 2.2 Methods 14 2.3 Results and Discussion 2.3.1 Stand Classification 19 2.3.2 Stand Ordination 32 CHAPTER 3: THE REGENERATION MODES OF ATHROTAXIS CUPRESSOIDES AND ATHROTAXIS SELAGINOIDES 3.1 Introduction 38 3.2 Methods 3.2.1 Stand demography 40 3.2.2 Spatial distribution of seedlings 43 3.2.3 Seed dispersal 44 3.2.4 Vegetative reproduction 45 3.3 Results and Discussion 3.3.1 Size/age correlations 48 3.3.2 Seed production and dispersal 52 3.3.3 Vegetative regeneration 55 3.3.4 Stand demography and seedling distribution of Athrotaxis cupressoides 60 3.3.5 Stand demography and seedling distribution of Athrotaxis seiaginoides 82 3.3.6 The presence of Athrotaxis laxifolia . 88 3.4 Conclusion 89 CHAPTER THE RELATIVE FROST RESISTANCE OF ATHROTAXIS CUPRESSOIDES AND ATHROTAXIS SELAGINOIDES SEEDLINGS 4.1 Introduction 92 4.2 Methods 93 4,3 Results 96 4.4 Discussion 99 CHAPTER 5: THE EFFECT OF GRAZING ON THE SEEDLING REGENERATION OF ATHROTAXIS CUPRESSOIDES 5.1 Introduction 107 5.2 Methods 107 5.3 Results 109 5.4 Discussion 111 CHAPTER 6: DISCUSSION 116 REFERENCES 135 APPENDIX A: REGENERATION PATTERNS IN POPULATIONS OF ATHROTAXIS SELAGINOIDES D.
    [Show full text]
  • Flora Survey on Hiltaba Station and Gawler Ranges National Park
    Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia.
    [Show full text]
  • Tasmania - from the Wet West to the Dry East
    This collection is maintained with the assistance of the Tasmania - from the wet west to the dry east. Regional Branch of the Australian Plant Society. Influences on the development of the Tasmanian plant mix Montane moorland and cool oceanic heathland When Gondwana existed as a super Geology of Tasmania Vegetation Map of Tasmania The Tasmanian highland vegetation developed in isolation from the Australian Alps. Even during ice continent, Australia and Tasmania, Africa, ages, hundreds of kilometres of lowland vegetation separated the two high altitude environments. South America, New Zealand and Antarctica shared many plant families and some Montane plants have to cope with wide temperature fluctuations, with periods of below 0°C and Genera. exposure to winds. Cold may be prolonged if the ground freezes. Plants may be blanketed by snow or BASS STRAIT the mountains by cloud. Snowmelt or clear weather can cause intense rays of light, resulting in high For example, the protea family has members temperature. Wind or sun can dry the plant and soil. in all those land masses except Antarctica. The Southern Africa panel covers the protea family more fully. Plants require moisture and warmth. Small hard leaves offer Tasmania was the last land mass to break protection from the drying away from Antarctica. The opening of the effects of sun and wind. Low gap between these land masses allowed the ocean to circulate growth avoids wind. Branches around Antarctica, cooling the earth’s climate and so locking up grow close together to shelter vast quantities of water as ice. the parts of each plant.
    [Show full text]
  • Supporting Information
    Supporting Information Mao et al. 10.1073/pnas.1114319109 SI Text BEAST Analyses. In addition to a BEAST analysis that used uniform Selection of Fossil Taxa and Their Phylogenetic Positions. The in- prior distributions for all calibrations (run 1; 144-taxon dataset, tegration of fossil calibrations is the most critical step in molecular calibrations as in Table S4), we performed eight additional dating (1, 2). We only used the fossil taxa with ovulate cones that analyses to explore factors affecting estimates of divergence could be assigned unambiguously to the extant groups (Table S4). time (Fig. S3). The exact phylogenetic position of fossils used to calibrate the First, to test the effect of calibration point P, which is close to molecular clocks was determined using the total-evidence analy- the root node and is the only functional hard maximum constraint ses (following refs. 3−5). Cordaixylon iowensis was not included in in BEAST runs using uniform priors, we carried out three runs the analyses because its assignment to the crown Acrogymno- with calibrations A through O (Table S4), and calibration P set to spermae already is supported by previous cladistic analyses (also [306.2, 351.7] (run 2), [306.2, 336.5] (run 3), and [306.2, 321.4] using the total-evidence approach) (6). Two data matrices were (run 4). The age estimates obtained in runs 2, 3, and 4 largely compiled. Matrix A comprised Ginkgo biloba, 12 living repre- overlapped with those from run 1 (Fig. S3). Second, we carried out two runs with different subsets of sentatives from each conifer family, and three fossils taxa related fi to Pinaceae and Araucariaceae (16 taxa in total; Fig.
    [Show full text]
  • Methods for Measuring Frost Tolerance of Conifers: a Systematic Map
    Review Methods for Measuring Frost Tolerance of Conifers: A Systematic Map Anastasia-Ainhoa Atucha Zamkova *, Katherine A. Steele and Andrew R. Smith School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK; [email protected] (K.A.S.); [email protected] (A.R.S.) * Correspondence: [email protected] Abstract: Frost tolerance is the ability of plants to withstand freezing temperatures without unrecov- erable damage. Measuring frost tolerance involves various steps, each of which will vary depending on the objectives of the study. This systematic map takes an overall view of the literature that uses frost tolerance measuring techniques in gymnosperms, focusing mainly on conifers. Many different techniques have been used for testing, and there has been little change in methodology since 2000. The gold standard remains the field observation study, which, due to its cost, is frequently substituted by other techniques. Closed enclosure freezing tests (all non-field freezing tests) are done using various types of equipment for inducing artificial freezing. An examination of the literature indicates that several factors have to be controlled in order to measure frost tolerance in a manner similar to observation in a field study. Equipment that allows controlling the freezing rate, frost exposure time and thawing rate would obtain results closer to field studies. Other important factors in study design are the number of test temperatures used, the range of temperatures selected and the decrements between the temperatures, which should be selected based on expected frost tolerance of the tissue and species. Citation: Atucha Zamkova, A.-A.; Steele, K.A.; Smith, A.R.
    [Show full text]
  • CUPRESSACEAE Actinostrobus Pyramidalis Swamp Cypress
    CUPRESSACEAE Actinostrobus pyramidalis Swamp cypress Female cones Avon Catchment Council Actinostrobus pyramidalis Swamp cypress Plant features Growth form Erect, dense, narrowly pyramidal shaped shrub 1-4m tall. Leaves The leaves are bright dark green, triangular in cross section, with three distinctive longitudinal ridges, 0.5-2mm long and held CUPRESSACEAE either erect or slightly spreading close to the stem. Cones The male cone are cylindrical to egg shaped, appear on the end of branchlets and are 2-8mm x 1.5-2.5mm. The female cones are egg shaped to almost circular 10-15mm long, green with usually 6 valves running from the stem to the tip which are also egg shaped. On maturing the valves become brown with a ‘scale’ at the base of each valve that has a grey margin around a light brown band which has a dark brown area inside. The seeds are 5-4mm long, fawn in colour with three lighter coloured wings. The young female and male cones are present from Aug-Nov with the female cones lasting all year. Bark Coarse, fissured dark grey brown bark over the entire tree. Distribution Found from near Kalbarri to Ravensthorpe along the coastal plain Floodfringe and throughout the western half of Floodway the Avon catchment. Normal winter level Zone, habitat Prefered habitat of Actinostrobus pyramidalis Occurs in floodways of swamps, creeks, rivers, estuaries and other brackish to saline winter wet depressions. Grows on a sandy soil types that may contain clay or loam. Additional information An unusual shrub that is useful on a range of brackish to saline waterbodies.
    [Show full text]