Tasmania - from the Wet West to the Dry East
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plants of Falls Creek Region Guide
WEEDS A Falls Creek Resort Management FIELD GUIDE 1 Slalom Street, Falls Creek VIC 3699 PO Box 50, Falls Creek VIC 3699 For more information go to www.fallsuserguide.com or phone the Visitor Information Centre on (03) 5758 1200 Yarrow Soft Rush Russel Lupin Achillea millefolium Juncus effusus Lupinus polyphyllus HELP PREVENT WEED SPREAD Weeds have a significant impact on the alpine environment. Many of the resort’s weeds were initially introduced as garden plants or to help stabilise modified ski slopes, unaware of the impact they would English Broom Grey Sallow Rowan have on our native flora and fauna. The large number Cytisus scoparius Salix cinerea Sorbus aucuparia of people, vehicles and machinery entering the resort continues to pose a risk of new weeds being introduced. A folding pocket guide to familiar Please do the right thing to prevent weed seed spread by brushing down and washing boots, gaiters and bikes. species of native plants and weeds There is a hose at the Bike Wash Station located across the road from the Falls Creek Police Station. Please report all weed sightings to Falls Creek Resort Blackberry Yellow Alstroemeria Periwinkle Management office or email: Rubus fruticosus Alstroemeria aurea Vinca minor [email protected] and include details on the location, number of plants and/or photos. This project has been supported by the Victorian Government as part of the Victorian Landcare Grants Program St John’s Wort Shasta Daisy Montbretia Hypericum Leucanthemum Crocosmia perforatum superbum crocosmiiflora GROUND -
Extinction, Transoceanic Dispersal, Adaptation and Rediversification
Turnover of southern cypresses in the post-Gondwanan world: Title extinction, transoceanic dispersal, adaptation and rediversification Crisp, Michael D.; Cook, Lyn G.; Bowman, David M. J. S.; Author(s) Cosgrove, Meredith; Isagi, Yuji; Sakaguchi, Shota Citation The New phytologist (2019), 221(4): 2308-2319 Issue Date 2019-03 URL http://hdl.handle.net/2433/244041 © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust; This is an open access article under the terms Right of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Research Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification Michael D. Crisp1 , Lyn G. Cook2 , David M. J. S. Bowman3 , Meredith Cosgrove1, Yuji Isagi4 and Shota Sakaguchi5 1Research School of Biology, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Acton (Canberra), ACT 2601, Australia; 2School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia; 3School of Natural Sciences, The University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia; 4Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; 5Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan Summary Author for correspondence: Cupressaceae subfamily Callitroideae has been an important exemplar for vicariance bio- Michael D. Crisp geography, but its history is more than just disjunctions resulting from continental drift. We Tel: +61 2 6125 2882 combine fossil and molecular data to better assess its extinction and, sometimes, rediversifica- Email: [email protected] tion after past global change. -
N E W S L E T T E R
N E W S L E T T E R PLANTS OF TASMANIA Nursery and Gardens 65 Hall St Ridgeway TAS 7054 Open 7 Days a week – 9 am to 5 pm Closed Christmas Day, Boxing Day and Good Friday Phone: (03) 6239 1583 Fax: (03) 6239 1106 Email: [email protected] Newsletter 26 Spring 2011 Website: www.potn.com.au Hello, and welcome to the spring newsletter for 2011! News from the Nursery We are madly propagating at the moment, with many thousands of new cuttings putting their roots out and seedlings popping their heads up above the propagating mix. It is always an exciting time, as we experiment with seed from new species – sometimes they work, and sometimes we understand why we’ve never grown them before... New plants should start being put out into the sales area soon – fresh-faced little things ready to pop into the ground! We have recently purchased a further block of land from the ex-neighbours Jubilee Nursery, now sadly closed, that will give us a lot more flexibility and the ability to grow and store more plants. As mentioned last newsletter we have done some major revamping in the garden. A lot of work by all the staff has led to a much more open garden with a lovely Westringia brevifolia hedge (well, it will be a hedge when it grows a bit), another Micrantheum hexandrum Cream Cascade hedge-to-be, lots of Correas, Lomatias and Baueras. Where we sell a few forms of a particular species we have tried to plant examples of each so that we can show you what they are like. -
Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
Fuels and Landscape Flammability in an Australian Alpine Environment 3
1 2 Fuels and landscape flammability in an Australian alpine environment 3 4 Fraser, Imogen P.1; Williams, Richard J.2; Murphy, Brett P.3; Camac, James S.4; Vesk, Peter 5 A.1 6 1 School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia. Email: 7 [email protected]. Phone: 0430 433 422. 8 2 CSIRO Tropical Ecosystems Research Centre, Winnellie, Northern Territory, Australia 9 3 Research Institute for the Environment and Livelihoods, Charles Darwin University, 10 Darwin, Northern Territory, Australia 11 4 Department of Biological Sciences, Macquarie University, New South Wales, Australia 12 13 Running head: Australian alpine fuels and landscape flammability 14 15 16 Key words: bulk density, fuel load, vegetation structure, fire severity, fire regimes 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 31 Abstract 32 Factors governing landscape-scale flammability are poorly understood, yet critical to 33 managing fire regimes. Studies of the extent and severity of the 2003 Australian alpine fires 34 revealed marked differences in flammability between major alpine plant communities, with 35 the occurrence and severity of fire greater in heathland compared to grassland. To 36 understand this spatial variation in landscape flammability we documented variation in two 37 physical properties of fuel – load and bulk density – at the life-form and plant community 38 scale. We measured load (mass per unit area) and bulk density (mass per unit volume) of fine 39 fuels (<6 mm) at 56 sites across the Bogong High Plains, southeastern Australia. Fine fuel 40 load was positively correlated with shrub cover, and fine fuel bulk density was negatively 41 correlated with shrub cover. -
The Ecology and Biogeography of Athrotaxis D. Don
THE ECOLOGY AND BIOGEOGRAPHY OF ATHROTAXIS D. DON. ,smo,e5 by Philip J. Cullen B.Sc. (Forestry) submitted in fulfilment of the requirements for the degree of Master of Science UNIVERSITY OF TASMANIA HOBART February 1987 DECLARATION This thesis contains no material which has been submitted for the award of any other degree or diploma in any university and contains no copy or paraphrases of material previously published or writtern by another person, except where due reference is made in the text. P. J. Cullen. CONTENTS PAGE ACKNOWLEGEMENTS ABSTRACT II LIST OF FIGURES IV LIST OF TABLES VI LIST OF PLATES VIII CHAPTER 1: INTRODUCTION , 1 CHAPTER 2: DISTRIBUTION AND SYNECOLOGY 2.1 Introduction 8 2.2 Methods 14 2.3 Results and Discussion 2.3.1 Stand Classification 19 2.3.2 Stand Ordination 32 CHAPTER 3: THE REGENERATION MODES OF ATHROTAXIS CUPRESSOIDES AND ATHROTAXIS SELAGINOIDES 3.1 Introduction 38 3.2 Methods 3.2.1 Stand demography 40 3.2.2 Spatial distribution of seedlings 43 3.2.3 Seed dispersal 44 3.2.4 Vegetative reproduction 45 3.3 Results and Discussion 3.3.1 Size/age correlations 48 3.3.2 Seed production and dispersal 52 3.3.3 Vegetative regeneration 55 3.3.4 Stand demography and seedling distribution of Athrotaxis cupressoides 60 3.3.5 Stand demography and seedling distribution of Athrotaxis seiaginoides 82 3.3.6 The presence of Athrotaxis laxifolia . 88 3.4 Conclusion 89 CHAPTER THE RELATIVE FROST RESISTANCE OF ATHROTAXIS CUPRESSOIDES AND ATHROTAXIS SELAGINOIDES SEEDLINGS 4.1 Introduction 92 4.2 Methods 93 4,3 Results 96 4.4 Discussion 99 CHAPTER 5: THE EFFECT OF GRAZING ON THE SEEDLING REGENERATION OF ATHROTAXIS CUPRESSOIDES 5.1 Introduction 107 5.2 Methods 107 5.3 Results 109 5.4 Discussion 111 CHAPTER 6: DISCUSSION 116 REFERENCES 135 APPENDIX A: REGENERATION PATTERNS IN POPULATIONS OF ATHROTAXIS SELAGINOIDES D. -
Central Highlands Plant Species List
Understorey Network Central Highlands Plant Species List This plant species list is a sample of species that occur in your municipality and are relatively easy to grow or to purchase from a native plant nursery. Some of the more common plants are listed, as well as uncommon species that have a limited distribution and only occur in your area. However, many more species could be included on the list. Observing your local bush is a good way to get an idea of what else may be grown in your area and is suited to your property. To help choose your plants, each species is scored against soil type, vegetation community and uses. An extensive listing of suitable species can be found on the NRM South and (cabbage gum) Understorey Network websites. Eucalyptus pauciflora Central Highlands Coastal Vegetation Coastal Rainforest Eucalypt Forest Wet Woodland and Dry Eucalypt Forest Vegetation Grassy Heath Wetland Sedgeland and Riparian Vegetation Montane drained soil Well drained soil Poorly Sandy soil Loamy soil Clay soil soil Poor soil Fertile Low flammablity Erosion control Shelter belts Bush tucker Wise Water Salinity control Easy to propagate from seed Easy to propagate from cuttings Easy to propagate by division Standard Common Grow Vegetation Community Soil Type Uses from Name Name Endemic Trees Acacia dealbata silver wattle • • • • • • • • • • • • Acacia melanoxylon blackwood • • • • • • • • • • • • Acacia verticillata prickly mimosa • • • • • • • • • • • • • Allocasuarina verticillata drooping sheoak • • • • • • • • • • Banksia marginata silver -
The Pine Genome Initiative- Science Plan Review
ProCoGen Training Workshop 2013 Umeå An Undiscovered Country: What Comparative Genomics Tells Us of Gymnosperm Genomes Ujwal R. Bagal, W. Walter Lorenz, Jeffrey F.D. Dean Warnell School of Forestry and Natural Resources & Institute of Bioinformatics University of Georgia Diverse Form and Life History JGI CSP - Conifer EST Project Transcriptome Assemblies Statistics Pinaceae Reads Contigs* • Pinus taeda 4,074,360 164,506 • Pinus palustris 542,503 44,975 • Pinus lambertiana 1,096,017 85,348 • Picea abies 623,144 36,867 • Cedrus atlantica 408,743 30,197 • Pseudotsuga menziesii 1,216,156 60,504 Other Conifer Families • Wollemia nobilis 471,719 35,814 • Cephalotaxus harringtonia 689,984 40,884 • Sequoia sempervirens 472,601 42,892 • Podocarpus macrophylla 584,579 36,624 • Sciadopitys verticillata 479,239 29,149 • Taxus baccata 398,037 33,142 *Assembled using MIRA http://ancangio.uga.edu/ng-genediscovery/conifer_dbMagic.jnlp Loblolly pine PAL amino acid sequence alignment Analysis Method Sequence Collection PlantTribe, PlantGDB, GenBank, Conifer DBMagic assemblies 25 taxa comprising of 71 sequences Phylogenetic analysis Maximum Likelihood: RAxML (Stamatakis et. al) Bayesian Method: MrBayes (Huelsenbeck, et al.) Tree reconciliation: NOTUNG 2.6 (Chen et al.) Phylogenetic Tree of Vascular Plant PALs Phylogenetic Analysis of Conifer PAL Gene Sequences Conifer-specific branch shown in green Amino Acids Under Relaxed Constraint Maximum Likelihood analysis Nested codon substitution models M0 : constant dN/dS ratio M2a : rate ratio ω1< 1, ω2=1 and ω3>1 M3 : (ω1< ω2< ω3) (M0, M2a, M3, M2a+S1, M2a+S2, M3+S1, M3+S2) Fitmodel version 0.5.3 ( Guindon et al. 2004) S1 : equal switching rates (alpha =beta) S2 : unequal switching rates (alpha ≠ beta) Variable gymnosperm PAL amino acid residues mapped onto a crystal structure for parsley PAL Ancestral polyploidy in seed plants and angiosperms Jiao et al. -
Supporting Information
Supporting Information Mao et al. 10.1073/pnas.1114319109 SI Text BEAST Analyses. In addition to a BEAST analysis that used uniform Selection of Fossil Taxa and Their Phylogenetic Positions. The in- prior distributions for all calibrations (run 1; 144-taxon dataset, tegration of fossil calibrations is the most critical step in molecular calibrations as in Table S4), we performed eight additional dating (1, 2). We only used the fossil taxa with ovulate cones that analyses to explore factors affecting estimates of divergence could be assigned unambiguously to the extant groups (Table S4). time (Fig. S3). The exact phylogenetic position of fossils used to calibrate the First, to test the effect of calibration point P, which is close to molecular clocks was determined using the total-evidence analy- the root node and is the only functional hard maximum constraint ses (following refs. 3−5). Cordaixylon iowensis was not included in in BEAST runs using uniform priors, we carried out three runs the analyses because its assignment to the crown Acrogymno- with calibrations A through O (Table S4), and calibration P set to spermae already is supported by previous cladistic analyses (also [306.2, 351.7] (run 2), [306.2, 336.5] (run 3), and [306.2, 321.4] using the total-evidence approach) (6). Two data matrices were (run 4). The age estimates obtained in runs 2, 3, and 4 largely compiled. Matrix A comprised Ginkgo biloba, 12 living repre- overlapped with those from run 1 (Fig. S3). Second, we carried out two runs with different subsets of sentatives from each conifer family, and three fossils taxa related fi to Pinaceae and Araucariaceae (16 taxa in total; Fig. -
Methods for Measuring Frost Tolerance of Conifers: a Systematic Map
Review Methods for Measuring Frost Tolerance of Conifers: A Systematic Map Anastasia-Ainhoa Atucha Zamkova *, Katherine A. Steele and Andrew R. Smith School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK; [email protected] (K.A.S.); [email protected] (A.R.S.) * Correspondence: [email protected] Abstract: Frost tolerance is the ability of plants to withstand freezing temperatures without unrecov- erable damage. Measuring frost tolerance involves various steps, each of which will vary depending on the objectives of the study. This systematic map takes an overall view of the literature that uses frost tolerance measuring techniques in gymnosperms, focusing mainly on conifers. Many different techniques have been used for testing, and there has been little change in methodology since 2000. The gold standard remains the field observation study, which, due to its cost, is frequently substituted by other techniques. Closed enclosure freezing tests (all non-field freezing tests) are done using various types of equipment for inducing artificial freezing. An examination of the literature indicates that several factors have to be controlled in order to measure frost tolerance in a manner similar to observation in a field study. Equipment that allows controlling the freezing rate, frost exposure time and thawing rate would obtain results closer to field studies. Other important factors in study design are the number of test temperatures used, the range of temperatures selected and the decrements between the temperatures, which should be selected based on expected frost tolerance of the tissue and species. Citation: Atucha Zamkova, A.-A.; Steele, K.A.; Smith, A.R. -
RPP Athrotaxis Cupressoides Rainforest: Grassy Facies
Vegetation Condition Benchmarks version 1 Rainforest and Related Scrub RPP Athrotaxis cupressoides rainforest: grassy facies Community Description: Athrotaxis cupressoides rainforest (RPP) forest is open or closed montane forest vegetation dominated by Athrotaxis cupressoides. In the grassy facies the understorey commonly contains Poa gunnii and a range of other grass species. Other understorey species may include Astelia alpina, Carpha alpina, Gleichenia alpina, Lepidosperma filiforme, Oreobolus distichus, Richea scoparia and Olearia pinifolius. This is one of three benchmarks that can be used to assess the condition of RPP. It is the appropriate benchmark to use in assessing the condition of the grassy component of the listed Athrotaxis cupressoides rainforest community (Schedule 3A, Nature Conservation Act 2002). Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 60% - - - Large Trees - 14 60 300 Organic Litter 45% - Logs ≥ 10 - 20 Large Logs ≥ 30 Recruitment Continuous Understorey Life Forms LF code # Spp Cover % Immature tree IT 1 5 Tree or large shrub T 2 5 Shrub S 2 5 Herbs and orchids H 2 5 Grass G 4 20 Tiny grass/tiny sedge/tiny lily TGS 1 2 Medium sedge/rush/sagg/lily MSR 2 10 Ground fern GF 1 5 Mosses and Lichens ML 1 5 Total 9 16 Last reviewed – 2 November 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg RPP Athrotaxis cupressoides rainforest: grassy facies Species lists: Canopy Tree Species Common Name Notes Athrotaxis cupressoides pencil pine Cradle Mountain area; some Athrotaxis selaginoides king billy pine closed canopy forests Cradle Mountain area; some Nothofagus cunninghamii myrtle beech closed canopy forests Typical Understorey Species * Common Name LF Code Nothofagus cunninghamii myrtle beech T Phyllocladus aspleniifolius celery top pine T Olearia pinifolia prickly daisybush S Richea species richea S Poa gunnii gunns snowgrass G Rytidosperma spp.